Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306803407> ?p ?o ?g. }
- W4306803407 endingPage "46" @default.
- W4306803407 startingPage "39" @default.
- W4306803407 abstract "Big data refers to a growing field of large database research. Administrative data, a subset of big data, includes information from insurance claims, electronic medical records, and registries that can be useful for investigating novel research questions. While its use provides salient advantages, potential researchers relying on big data would benefit from knowing about how these databases are coded, common errors they may encounter, and how to best use large data to address various research questions. In the first section of this paper, Dr. Nicholas A. Bedard addresses the four major pitfalls to avoid with diagnosis and procedure codes in administrative data. In the next section, Dr. Jeffrey N. Katz et al. focus on the strengths and limitations of administrative data, suggesting methods to mitigate these limitations. Lastly, Dr. Elena Losina et al. review the uses and misuses of large databases for cost-effectiveness research, detailing methods for careful economic evaluations." @default.
- W4306803407 created "2022-10-20" @default.
- W4306803407 creator A5017169668 @default.
- W4306803407 creator A5019522183 @default.
- W4306803407 creator A5030816361 @default.
- W4306803407 creator A5040492165 @default.
- W4306803407 creator A5065206469 @default.
- W4306803407 date "2022-10-19" @default.
- W4306803407 modified "2023-09-30" @default.
- W4306803407 title "Administrative Data Use in National Registry Efforts: Blessing or Curse?" @default.
- W4306803407 cites W1525559593 @default.
- W4306803407 cites W1839160314 @default.
- W4306803407 cites W1904726308 @default.
- W4306803407 cites W1914460910 @default.
- W4306803407 cites W1980991303 @default.
- W4306803407 cites W2010514316 @default.
- W4306803407 cites W2014440969 @default.
- W4306803407 cites W2024371729 @default.
- W4306803407 cites W2031139286 @default.
- W4306803407 cites W2046093194 @default.
- W4306803407 cites W2063361588 @default.
- W4306803407 cites W2079911603 @default.
- W4306803407 cites W2100384259 @default.
- W4306803407 cites W2117285963 @default.
- W4306803407 cites W2125840055 @default.
- W4306803407 cites W2137737901 @default.
- W4306803407 cites W2267443133 @default.
- W4306803407 cites W2282540292 @default.
- W4306803407 cites W2285048551 @default.
- W4306803407 cites W2296531092 @default.
- W4306803407 cites W2298338128 @default.
- W4306803407 cites W2472648766 @default.
- W4306803407 cites W2479217638 @default.
- W4306803407 cites W2521854653 @default.
- W4306803407 cites W2528546146 @default.
- W4306803407 cites W2548183822 @default.
- W4306803407 cites W2599554181 @default.
- W4306803407 cites W2604099412 @default.
- W4306803407 cites W2741338806 @default.
- W4306803407 cites W2755688330 @default.
- W4306803407 cites W2790233912 @default.
- W4306803407 cites W2790725325 @default.
- W4306803407 cites W2800795466 @default.
- W4306803407 cites W2806737678 @default.
- W4306803407 cites W2885948578 @default.
- W4306803407 cites W2904616002 @default.
- W4306803407 cites W2912155126 @default.
- W4306803407 cites W2912638201 @default.
- W4306803407 cites W2921214313 @default.
- W4306803407 cites W2923684160 @default.
- W4306803407 cites W2947180533 @default.
- W4306803407 cites W2950447926 @default.
- W4306803407 cites W2970754972 @default.
- W4306803407 cites W2979413264 @default.
- W4306803407 cites W2996476125 @default.
- W4306803407 cites W2997662027 @default.
- W4306803407 cites W3025677691 @default.
- W4306803407 cites W3025987862 @default.
- W4306803407 cites W3032379927 @default.
- W4306803407 cites W3111796480 @default.
- W4306803407 cites W3124891778 @default.
- W4306803407 cites W3131026219 @default.
- W4306803407 cites W3164388594 @default.
- W4306803407 cites W3183081949 @default.
- W4306803407 cites W3192669545 @default.
- W4306803407 cites W3194991385 @default.
- W4306803407 cites W3197661186 @default.
- W4306803407 cites W4205834284 @default.
- W4306803407 cites W4229332383 @default.
- W4306803407 cites W4362192374 @default.
- W4306803407 cites W4362198532 @default.
- W4306803407 doi "https://doi.org/10.2106/jbjs.22.00565" @default.
- W4306803407 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36260043" @default.
- W4306803407 hasPublicationYear "2022" @default.
- W4306803407 type Work @default.
- W4306803407 citedByCount "1" @default.
- W4306803407 countsByYear W43068034072022 @default.
- W4306803407 crossrefType "journal-article" @default.
- W4306803407 hasAuthorship W4306803407A5017169668 @default.
- W4306803407 hasAuthorship W4306803407A5019522183 @default.
- W4306803407 hasAuthorship W4306803407A5030816361 @default.
- W4306803407 hasAuthorship W4306803407A5040492165 @default.
- W4306803407 hasAuthorship W4306803407A5065206469 @default.
- W4306803407 hasConcept C111919701 @default.
- W4306803407 hasConcept C124101348 @default.
- W4306803407 hasConcept C154945302 @default.
- W4306803407 hasConcept C166957645 @default.
- W4306803407 hasConcept C202444582 @default.
- W4306803407 hasConcept C205649164 @default.
- W4306803407 hasConcept C2522767166 @default.
- W4306803407 hasConcept C2776195157 @default.
- W4306803407 hasConcept C2780129039 @default.
- W4306803407 hasConcept C2780719617 @default.
- W4306803407 hasConcept C33923547 @default.
- W4306803407 hasConcept C41008148 @default.
- W4306803407 hasConcept C75684735 @default.
- W4306803407 hasConcept C9652623 @default.
- W4306803407 hasConceptScore W4306803407C111919701 @default.