Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306803512> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4306803512 abstract "Frequent occurrences of extreme weather events substantially impact the lives of the less privileged in our societies, particularly in agriculture-inclined economies. The unpredictability of extreme fires, floods, drought, cyclones, and others endangers sustainable production and life on land (SDG goal 15), which translates into food insecurity and poorer populations. Fortunately, modern technologies such as Artificial Intelligent (AI), the Internet of Things (IoT), blockchain, 3D printing, and virtual and augmented reality (VR and AR) are promising to reduce the risk and impact of extreme weather in our societies. However, research directions on how these technologies could help reduce the impact of extreme weather are unclear. This makes it challenging to emploring digital technologies within the spheres of extreme weather. In this paper, we employed the Delphi Best Worst method and Machine learning approaches to identify and assess the push factors of technology. The BWM evaluation revealed that predictive nature was AI's most important criterion and role, while the mass-market potential was the less important criterion. Based on this outcome, we tested the predictive ability of machine elarning on a publilcly available dataset to affrm the predictive rols of AI. We presented the managerial and methodological implications of the study, which are crucial for research and practice. The methodology utilized in this study could aid decision-makers in devising strategies and interventions to safeguard sustainable production. This will also facilitate allocating scarce resources and investment in improving AI techniques to reduce the adverse impacts of extreme events. Correspondingly, we put forward the limitations of this, which necessitate future research." @default.
- W4306803512 created "2022-10-20" @default.
- W4306803512 creator A5067555260 @default.
- W4306803512 creator A5072097480 @default.
- W4306803512 creator A5079448852 @default.
- W4306803512 date "2022-09-21" @default.
- W4306803512 modified "2023-10-16" @default.
- W4306803512 title "Artificial Intelligence and Innovation to Reduce the Impact of Extreme Weather Events on Sustainable Production" @default.
- W4306803512 doi "https://doi.org/10.48550/arxiv.2210.08962" @default.
- W4306803512 hasPublicationYear "2022" @default.
- W4306803512 type Work @default.
- W4306803512 citedByCount "0" @default.
- W4306803512 crossrefType "posted-content" @default.
- W4306803512 hasAuthorship W4306803512A5067555260 @default.
- W4306803512 hasAuthorship W4306803512A5072097480 @default.
- W4306803512 hasAuthorship W4306803512A5079448852 @default.
- W4306803512 hasBestOaLocation W43068035121 @default.
- W4306803512 hasConcept C112930515 @default.
- W4306803512 hasConcept C132651083 @default.
- W4306803512 hasConcept C139719470 @default.
- W4306803512 hasConcept C144133560 @default.
- W4306803512 hasConcept C154945302 @default.
- W4306803512 hasConcept C162324750 @default.
- W4306803512 hasConcept C18903297 @default.
- W4306803512 hasConcept C205537798 @default.
- W4306803512 hasConcept C2778348673 @default.
- W4306803512 hasConcept C2780150128 @default.
- W4306803512 hasConcept C41008148 @default.
- W4306803512 hasConcept C50644808 @default.
- W4306803512 hasConcept C60641444 @default.
- W4306803512 hasConcept C86803240 @default.
- W4306803512 hasConceptScore W4306803512C112930515 @default.
- W4306803512 hasConceptScore W4306803512C132651083 @default.
- W4306803512 hasConceptScore W4306803512C139719470 @default.
- W4306803512 hasConceptScore W4306803512C144133560 @default.
- W4306803512 hasConceptScore W4306803512C154945302 @default.
- W4306803512 hasConceptScore W4306803512C162324750 @default.
- W4306803512 hasConceptScore W4306803512C18903297 @default.
- W4306803512 hasConceptScore W4306803512C205537798 @default.
- W4306803512 hasConceptScore W4306803512C2778348673 @default.
- W4306803512 hasConceptScore W4306803512C2780150128 @default.
- W4306803512 hasConceptScore W4306803512C41008148 @default.
- W4306803512 hasConceptScore W4306803512C50644808 @default.
- W4306803512 hasConceptScore W4306803512C60641444 @default.
- W4306803512 hasConceptScore W4306803512C86803240 @default.
- W4306803512 hasLocation W43068035121 @default.
- W4306803512 hasOpenAccess W4306803512 @default.
- W4306803512 hasPrimaryLocation W43068035121 @default.
- W4306803512 hasRelatedWork W2475251269 @default.
- W4306803512 hasRelatedWork W2888210060 @default.
- W4306803512 hasRelatedWork W2945765785 @default.
- W4306803512 hasRelatedWork W2969890106 @default.
- W4306803512 hasRelatedWork W3002504458 @default.
- W4306803512 hasRelatedWork W3134233996 @default.
- W4306803512 hasRelatedWork W3174207828 @default.
- W4306803512 hasRelatedWork W3189352981 @default.
- W4306803512 hasRelatedWork W4214884892 @default.
- W4306803512 hasRelatedWork W4320060020 @default.
- W4306803512 isParatext "false" @default.
- W4306803512 isRetracted "false" @default.
- W4306803512 workType "article" @default.