Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306804968> ?p ?o ?g. }
- W4306804968 endingPage "1062" @default.
- W4306804968 startingPage "1053" @default.
- W4306804968 abstract "In this study, we propose a multi-thread artificial intelligence (AI) camera system that can simultaneously recognize remote objects in desired multiple areas of interest (AOIs), which are distributed in a wide field of view (FOV) by using single image sensor. The proposed multi-thread AI camera consists of an ultrafast active vision system and a convolutional neural network (CNN)-based ultrafast object recognition system. The ultrafast active vision system can function as multiple virtual cameras with high spatial resolution by synchronizing exposure of a high-speed camera and movement of an ultrafast two-axis mirror device at hundreds of hertz, and the CNN-based ultrafast object recognition system simultaneously recognizes the acquired high-frame-rate images in real time. The desired AOIs for monitoring can be automatically determined after rapidly scanning pre-placed visual anchors in the wide FOV at hundreds of fps with object recognition. The effectiveness of the proposed multi-thread AI camera system was demonstrated by conducting several wide area monitoring experiments on quick response (QR) codes and persons in nature spacious scene such as meeting room, which was formerly too wide for a single still camera with wide angle lens to simultaneously acquire clear images." @default.
- W4306804968 created "2022-10-20" @default.
- W4306804968 creator A5005382488 @default.
- W4306804968 creator A5023755220 @default.
- W4306804968 creator A5044111191 @default.
- W4306804968 creator A5057360522 @default.
- W4306804968 creator A5060719224 @default.
- W4306804968 date "2022-10-20" @default.
- W4306804968 modified "2023-10-12" @default.
- W4306804968 title "Multi-Thread AI Cameras Using High-Speed Active Vision System" @default.
- W4306804968 cites W1490630008 @default.
- W4306804968 cites W1885185971 @default.
- W4306804968 cites W1963929736 @default.
- W4306804968 cites W1972822091 @default.
- W4306804968 cites W1975907365 @default.
- W4306804968 cites W1991604044 @default.
- W4306804968 cites W2004195487 @default.
- W4306804968 cites W2057227026 @default.
- W4306804968 cites W2065437087 @default.
- W4306804968 cites W2114979702 @default.
- W4306804968 cites W2117668073 @default.
- W4306804968 cites W2121058967 @default.
- W4306804968 cites W2143137993 @default.
- W4306804968 cites W2168405063 @default.
- W4306804968 cites W2169782680 @default.
- W4306804968 cites W2317690774 @default.
- W4306804968 cites W2331619054 @default.
- W4306804968 cites W2545687911 @default.
- W4306804968 cites W2549204772 @default.
- W4306804968 cites W2568365745 @default.
- W4306804968 cites W2587634176 @default.
- W4306804968 cites W2749510438 @default.
- W4306804968 cites W2766476911 @default.
- W4306804968 cites W2789572900 @default.
- W4306804968 cites W2809593444 @default.
- W4306804968 cites W2889593534 @default.
- W4306804968 cites W2898182017 @default.
- W4306804968 cites W2912042112 @default.
- W4306804968 cites W2928505803 @default.
- W4306804968 cites W2942645380 @default.
- W4306804968 cites W2960512482 @default.
- W4306804968 cites W2963372104 @default.
- W4306804968 cites W2963470893 @default.
- W4306804968 cites W2969985801 @default.
- W4306804968 cites W3001735192 @default.
- W4306804968 cites W3036889519 @default.
- W4306804968 cites W3040965886 @default.
- W4306804968 cites W3104255671 @default.
- W4306804968 cites W3119732366 @default.
- W4306804968 cites W3120243212 @default.
- W4306804968 cites W3125311193 @default.
- W4306804968 cites W3126327435 @default.
- W4306804968 cites W3133086547 @default.
- W4306804968 cites W3138898594 @default.
- W4306804968 cites W3144939529 @default.
- W4306804968 cites W3186471141 @default.
- W4306804968 cites W3215992557 @default.
- W4306804968 cites W4210871926 @default.
- W4306804968 doi "https://doi.org/10.20965/jrm.2022.p1053" @default.
- W4306804968 hasPublicationYear "2022" @default.
- W4306804968 type Work @default.
- W4306804968 citedByCount "0" @default.
- W4306804968 crossrefType "journal-article" @default.
- W4306804968 hasAuthorship W4306804968A5005382488 @default.
- W4306804968 hasAuthorship W4306804968A5023755220 @default.
- W4306804968 hasAuthorship W4306804968A5044111191 @default.
- W4306804968 hasAuthorship W4306804968A5057360522 @default.
- W4306804968 hasAuthorship W4306804968A5060719224 @default.
- W4306804968 hasBestOaLocation W43068049681 @default.
- W4306804968 hasConcept C111919701 @default.
- W4306804968 hasConcept C138101251 @default.
- W4306804968 hasConcept C150627866 @default.
- W4306804968 hasConcept C154945302 @default.
- W4306804968 hasConcept C161334170 @default.
- W4306804968 hasConcept C162932704 @default.
- W4306804968 hasConcept C31972630 @default.
- W4306804968 hasConcept C3261483 @default.
- W4306804968 hasConcept C41008148 @default.
- W4306804968 hasConcept C5339829 @default.
- W4306804968 hasConcept C761482 @default.
- W4306804968 hasConcept C76155785 @default.
- W4306804968 hasConcept C81363708 @default.
- W4306804968 hasConceptScore W4306804968C111919701 @default.
- W4306804968 hasConceptScore W4306804968C138101251 @default.
- W4306804968 hasConceptScore W4306804968C150627866 @default.
- W4306804968 hasConceptScore W4306804968C154945302 @default.
- W4306804968 hasConceptScore W4306804968C161334170 @default.
- W4306804968 hasConceptScore W4306804968C162932704 @default.
- W4306804968 hasConceptScore W4306804968C31972630 @default.
- W4306804968 hasConceptScore W4306804968C3261483 @default.
- W4306804968 hasConceptScore W4306804968C41008148 @default.
- W4306804968 hasConceptScore W4306804968C5339829 @default.
- W4306804968 hasConceptScore W4306804968C761482 @default.
- W4306804968 hasConceptScore W4306804968C76155785 @default.
- W4306804968 hasConceptScore W4306804968C81363708 @default.
- W4306804968 hasFunder F4320334789 @default.
- W4306804968 hasIssue "5" @default.
- W4306804968 hasLocation W43068049681 @default.