Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306810328> ?p ?o ?g. }
- W4306810328 abstract "Abstract Quantitative predictions of the physical state of the Earth’s subsurface are routinely based on numerical solutions of complex coupled partial differential equations together with estimates of the uncertainties in the material parameters. The resulting high-dimensional problems are computationally prohibitive even for state-of-the-art solver solutions. In this study, we introduce a hybrid physics-based machine learning technique, the non-intrusive reduced basis method, to construct reliable, scalable, and interpretable surrogate models. Our approach, to combine physical process models with data-driven machine learning techniques, allows us to overcome limitations specific to each individual component, and it enables us to carry out probabilistic analyses, such as global sensitivity studies and uncertainty quantification for real-case non-linearly coupled physical problems. It additionally provides orders of magnitude computational gain, while maintaining an accuracy higher than measurement errors. Although in this study we use a thermo-hydro-mechanical reservoir application to illustrate these features, all the theory described is equally valid and applicable to a wider range of geoscientific applications." @default.
- W4306810328 created "2022-10-20" @default.
- W4306810328 creator A5030462244 @default.
- W4306810328 creator A5031164327 @default.
- W4306810328 creator A5090933810 @default.
- W4306810328 date "2022-10-19" @default.
- W4306810328 modified "2023-09-26" @default.
- W4306810328 title "3D multi-physics uncertainty quantification using physics-based machine learning" @default.
- W4306810328 cites W1960881728 @default.
- W4306810328 cites W1983156380 @default.
- W4306810328 cites W2012745752 @default.
- W4306810328 cites W2029767409 @default.
- W4306810328 cites W2039919992 @default.
- W4306810328 cites W2087550141 @default.
- W4306810328 cites W2088765131 @default.
- W4306810328 cites W2101589741 @default.
- W4306810328 cites W2107425111 @default.
- W4306810328 cites W2133041109 @default.
- W4306810328 cites W2142393582 @default.
- W4306810328 cites W2152896489 @default.
- W4306810328 cites W2569457803 @default.
- W4306810328 cites W2602390818 @default.
- W4306810328 cites W2766298346 @default.
- W4306810328 cites W2809491586 @default.
- W4306810328 cites W2885397520 @default.
- W4306810328 cites W2886299792 @default.
- W4306810328 cites W2890360762 @default.
- W4306810328 cites W2899283552 @default.
- W4306810328 cites W2907048372 @default.
- W4306810328 cites W2911578761 @default.
- W4306810328 cites W2915854813 @default.
- W4306810328 cites W2923222994 @default.
- W4306810328 cites W2962703949 @default.
- W4306810328 cites W2985958607 @default.
- W4306810328 cites W2995223207 @default.
- W4306810328 cites W2997814214 @default.
- W4306810328 cites W3010849941 @default.
- W4306810328 cites W3031879091 @default.
- W4306810328 cites W3036784092 @default.
- W4306810328 cites W3081274109 @default.
- W4306810328 cites W3121635561 @default.
- W4306810328 cites W3126459955 @default.
- W4306810328 cites W3131921307 @default.
- W4306810328 cites W3138378275 @default.
- W4306810328 cites W3171480105 @default.
- W4306810328 cites W3194461260 @default.
- W4306810328 cites W3205073660 @default.
- W4306810328 cites W4200103855 @default.
- W4306810328 cites W4210423197 @default.
- W4306810328 cites W4221029548 @default.
- W4306810328 cites W4234440840 @default.
- W4306810328 cites W4289139828 @default.
- W4306810328 cites W4295660562 @default.
- W4306810328 doi "https://doi.org/10.1038/s41598-022-21739-7" @default.
- W4306810328 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36261601" @default.
- W4306810328 hasPublicationYear "2022" @default.
- W4306810328 type Work @default.
- W4306810328 citedByCount "1" @default.
- W4306810328 countsByYear W43068103282023 @default.
- W4306810328 crossrefType "journal-article" @default.
- W4306810328 hasAuthorship W4306810328A5030462244 @default.
- W4306810328 hasAuthorship W4306810328A5031164327 @default.
- W4306810328 hasAuthorship W4306810328A5090933810 @default.
- W4306810328 hasBestOaLocation W43068103281 @default.
- W4306810328 hasConcept C111919701 @default.
- W4306810328 hasConcept C116672817 @default.
- W4306810328 hasConcept C119857082 @default.
- W4306810328 hasConcept C121332964 @default.
- W4306810328 hasConcept C12426560 @default.
- W4306810328 hasConcept C127413603 @default.
- W4306810328 hasConcept C154945302 @default.
- W4306810328 hasConcept C159985019 @default.
- W4306810328 hasConcept C168167062 @default.
- W4306810328 hasConcept C192562407 @default.
- W4306810328 hasConcept C199360897 @default.
- W4306810328 hasConcept C204323151 @default.
- W4306810328 hasConcept C21200559 @default.
- W4306810328 hasConcept C24326235 @default.
- W4306810328 hasConcept C2524010 @default.
- W4306810328 hasConcept C2778770139 @default.
- W4306810328 hasConcept C2780801425 @default.
- W4306810328 hasConcept C32230216 @default.
- W4306810328 hasConcept C33923547 @default.
- W4306810328 hasConcept C41008148 @default.
- W4306810328 hasConcept C48044578 @default.
- W4306810328 hasConcept C49937458 @default.
- W4306810328 hasConcept C62520636 @default.
- W4306810328 hasConcept C77088390 @default.
- W4306810328 hasConcept C93779851 @default.
- W4306810328 hasConcept C97355855 @default.
- W4306810328 hasConcept C98045186 @default.
- W4306810328 hasConceptScore W4306810328C111919701 @default.
- W4306810328 hasConceptScore W4306810328C116672817 @default.
- W4306810328 hasConceptScore W4306810328C119857082 @default.
- W4306810328 hasConceptScore W4306810328C121332964 @default.
- W4306810328 hasConceptScore W4306810328C12426560 @default.
- W4306810328 hasConceptScore W4306810328C127413603 @default.
- W4306810328 hasConceptScore W4306810328C154945302 @default.
- W4306810328 hasConceptScore W4306810328C159985019 @default.
- W4306810328 hasConceptScore W4306810328C168167062 @default.