Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306836294> ?p ?o ?g. }
- W4306836294 endingPage "10572" @default.
- W4306836294 startingPage "10572" @default.
- W4306836294 abstract "Railways speedily transport many people and goods nationwide, so railway accidents can pose immense damage. However, the infrastructure of railways is so complex that its maintenance is challenging and expensive. Therefore, using artificial intelligence for railway safety has attracted many researchers. This paper examines artificial intelligence applications for railway safety, mainly focusing on deep learning approaches. This paper first introduces deep learning methods widely used for railway safety. Then, we investigated and classified earlier studies into four representative application areas: (1) railway infrastructure (catenary, surface, components, and geometry), (2) train body and bogie (door, wheel, suspension, bearing, etc.), (3) operation (railway detection, railroad trespassing, wind risk, train running safety, etc.), and (4) station (air quality control, accident prevention, etc.). We present fundamental problems and popular approaches for each application area. Finally, based on the literature reviews, we discuss the opportunities and challenges of artificial intelligence for railway safety." @default.
- W4306836294 created "2022-10-20" @default.
- W4306836294 creator A5011257281 @default.
- W4306836294 creator A5033052505 @default.
- W4306836294 creator A5040135939 @default.
- W4306836294 creator A5062204628 @default.
- W4306836294 creator A5064551409 @default.
- W4306836294 creator A5064973975 @default.
- W4306836294 creator A5082002320 @default.
- W4306836294 date "2022-10-19" @default.
- W4306836294 modified "2023-09-30" @default.
- W4306836294 title "A Review of Deep Learning Applications for Railway Safety" @default.
- W4306836294 cites W1537314081 @default.
- W4306836294 cites W1969147224 @default.
- W4306836294 cites W1973445088 @default.
- W4306836294 cites W2001141328 @default.
- W4306836294 cites W2018168021 @default.
- W4306836294 cites W2047426693 @default.
- W4306836294 cites W2053186076 @default.
- W4306836294 cites W2100235303 @default.
- W4306836294 cites W2122538988 @default.
- W4306836294 cites W2406523001 @default.
- W4306836294 cites W2526017544 @default.
- W4306836294 cites W2538776421 @default.
- W4306836294 cites W2555875178 @default.
- W4306836294 cites W2581853886 @default.
- W4306836294 cites W2744245146 @default.
- W4306836294 cites W2785093363 @default.
- W4306836294 cites W2794204271 @default.
- W4306836294 cites W2799453232 @default.
- W4306836294 cites W2890591570 @default.
- W4306836294 cites W2896967004 @default.
- W4306836294 cites W2899280016 @default.
- W4306836294 cites W2900458319 @default.
- W4306836294 cites W2903168818 @default.
- W4306836294 cites W2911469685 @default.
- W4306836294 cites W2913133337 @default.
- W4306836294 cites W2914182690 @default.
- W4306836294 cites W2920611841 @default.
- W4306836294 cites W2928165649 @default.
- W4306836294 cites W2940865152 @default.
- W4306836294 cites W2943884587 @default.
- W4306836294 cites W2946657488 @default.
- W4306836294 cites W2954621898 @default.
- W4306836294 cites W2969003068 @default.
- W4306836294 cites W2973409835 @default.
- W4306836294 cites W2977371410 @default.
- W4306836294 cites W2989656089 @default.
- W4306836294 cites W2990607811 @default.
- W4306836294 cites W2994982829 @default.
- W4306836294 cites W2997073788 @default.
- W4306836294 cites W3004513120 @default.
- W4306836294 cites W3004908459 @default.
- W4306836294 cites W3031844275 @default.
- W4306836294 cites W3035680081 @default.
- W4306836294 cites W3039379476 @default.
- W4306836294 cites W3088602441 @default.
- W4306836294 cites W3096526468 @default.
- W4306836294 cites W3104340740 @default.
- W4306836294 cites W3106553992 @default.
- W4306836294 cites W3112721793 @default.
- W4306836294 cites W3114177701 @default.
- W4306836294 cites W3114421778 @default.
- W4306836294 cites W3119267593 @default.
- W4306836294 cites W3127610005 @default.
- W4306836294 cites W3129040422 @default.
- W4306836294 cites W3135205607 @default.
- W4306836294 cites W3148337205 @default.
- W4306836294 cites W3158950392 @default.
- W4306836294 cites W3165067664 @default.
- W4306836294 cites W3167900848 @default.
- W4306836294 cites W3173328131 @default.
- W4306836294 cites W3174223698 @default.
- W4306836294 cites W3177456145 @default.
- W4306836294 cites W3187933708 @default.
- W4306836294 cites W3204197025 @default.
- W4306836294 cites W3204295647 @default.
- W4306836294 cites W3211907153 @default.
- W4306836294 cites W4213089724 @default.
- W4306836294 cites W4229007983 @default.
- W4306836294 cites W4245502741 @default.
- W4306836294 doi "https://doi.org/10.3390/app122010572" @default.
- W4306836294 hasPublicationYear "2022" @default.
- W4306836294 type Work @default.
- W4306836294 citedByCount "5" @default.
- W4306836294 countsByYear W43068362942023 @default.
- W4306836294 crossrefType "journal-article" @default.
- W4306836294 hasAuthorship W4306836294A5011257281 @default.
- W4306836294 hasAuthorship W4306836294A5033052505 @default.
- W4306836294 hasAuthorship W4306836294A5040135939 @default.
- W4306836294 hasAuthorship W4306836294A5062204628 @default.
- W4306836294 hasAuthorship W4306836294A5064551409 @default.
- W4306836294 hasAuthorship W4306836294A5064973975 @default.
- W4306836294 hasAuthorship W4306836294A5082002320 @default.
- W4306836294 hasBestOaLocation W43068362941 @default.
- W4306836294 hasConcept C127413603 @default.
- W4306836294 hasConcept C22212356 @default.
- W4306836294 hasConcept C29279314 @default.