Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306848270> ?p ?o ?g. }
- W4306848270 endingPage "1721" @default.
- W4306848270 startingPage "1721" @default.
- W4306848270 abstract "Forests sequester atmospheric carbon dioxide (CO2) which is important for climate mitigation. Net ecosystem production (NEP) varies significantly across forests in different regions depending on the dominant tree species, stand age, and environmental factors. Therefore, it is important to evaluate forest NEP and its potential changes under climate change in different regions to inform forestry policy making. Norway spruce (Picea abies) is the most prevalent species in conifer forests throughout Europe. Here, we focused on Norway spruce forests and used eddy covariance-based observations of CO2 fluxes and other variables from eight sites to build a XGBoost machine learning model for NEP estimation. The NEP values from the study sites varied between −296 (source) and 1253 (sink) g C m−2 yr−1. Overall, among the tested variables, air temperature was the most important factor driving NEP variations, followed by global radiation and stand age, while precipitation had a very limited contribution to the model. The model was used to predict the NEP of mature Norway spruce forests in different regions within Europe. The NEP median value was 494 g C m−2 yr−1 across the study areas, with higher NEP values, up to >800 g C m−2 yr−1, in lower latitude regions. Under the “middle-of-the-road” SSP2-4.5 scenario, the NEP values tended to be greater in almost all the studied regions by 2060 with the estimated median of NEP changes in 2041–2060 to be +45 g C m−2 yr−1. Our results indicate that Norway spruce forests show high productivity in a wide area of Europe with potentially future NEP enhancement. However, due to the limitations of the data, the potential decrease in NEP induced by temperature increases beyond the photosynthesis optima and frequent ecosystem disturbances (e.g., drought, bark beetle infestation, etc.) still needs to be evaluated." @default.
- W4306848270 created "2022-10-20" @default.
- W4306848270 creator A5016437475 @default.
- W4306848270 creator A5073598721 @default.
- W4306848270 creator A5088580550 @default.
- W4306848270 date "2022-10-19" @default.
- W4306848270 modified "2023-09-30" @default.
- W4306848270 title "Estimating Carbon Sink Strength of Norway Spruce Forests Using Machine Learning" @default.
- W4306848270 cites W1552407022 @default.
- W4306848270 cites W1583960656 @default.
- W4306848270 cites W1824542205 @default.
- W4306848270 cites W1867005924 @default.
- W4306848270 cites W1966290077 @default.
- W4306848270 cites W1975928375 @default.
- W4306848270 cites W2004665115 @default.
- W4306848270 cites W2011173929 @default.
- W4306848270 cites W2034634405 @default.
- W4306848270 cites W2051426308 @default.
- W4306848270 cites W2063559297 @default.
- W4306848270 cites W2067648502 @default.
- W4306848270 cites W2068129985 @default.
- W4306848270 cites W2099224694 @default.
- W4306848270 cites W2108920378 @default.
- W4306848270 cites W2109280007 @default.
- W4306848270 cites W2110567645 @default.
- W4306848270 cites W2111212541 @default.
- W4306848270 cites W2116963961 @default.
- W4306848270 cites W2124437404 @default.
- W4306848270 cites W2125056516 @default.
- W4306848270 cites W2125847307 @default.
- W4306848270 cites W2127313181 @default.
- W4306848270 cites W2128342866 @default.
- W4306848270 cites W2137999170 @default.
- W4306848270 cites W2154839779 @default.
- W4306848270 cites W2159352421 @default.
- W4306848270 cites W2164745843 @default.
- W4306848270 cites W2165785708 @default.
- W4306848270 cites W2193503481 @default.
- W4306848270 cites W2296015115 @default.
- W4306848270 cites W2312535521 @default.
- W4306848270 cites W2338049369 @default.
- W4306848270 cites W2539945237 @default.
- W4306848270 cites W2572560237 @default.
- W4306848270 cites W2591894522 @default.
- W4306848270 cites W2610847026 @default.
- W4306848270 cites W2614464134 @default.
- W4306848270 cites W2757806320 @default.
- W4306848270 cites W2785822431 @default.
- W4306848270 cites W2786693279 @default.
- W4306848270 cites W2794051440 @default.
- W4306848270 cites W2804699855 @default.
- W4306848270 cites W2900992919 @default.
- W4306848270 cites W2904061031 @default.
- W4306848270 cites W2921781939 @default.
- W4306848270 cites W2954482899 @default.
- W4306848270 cites W2955316307 @default.
- W4306848270 cites W2976863702 @default.
- W4306848270 cites W2981792167 @default.
- W4306848270 cites W3000251291 @default.
- W4306848270 cites W3040739689 @default.
- W4306848270 cites W3080249946 @default.
- W4306848270 cites W3113156800 @default.
- W4306848270 cites W3119236416 @default.
- W4306848270 cites W3128201067 @default.
- W4306848270 cites W3135861594 @default.
- W4306848270 cites W3136987169 @default.
- W4306848270 cites W3137155093 @default.
- W4306848270 cites W3154675254 @default.
- W4306848270 cites W3176438908 @default.
- W4306848270 cites W3181827495 @default.
- W4306848270 cites W3187926703 @default.
- W4306848270 cites W3202431976 @default.
- W4306848270 cites W4200040062 @default.
- W4306848270 cites W4210376058 @default.
- W4306848270 doi "https://doi.org/10.3390/f13101721" @default.
- W4306848270 hasPublicationYear "2022" @default.
- W4306848270 type Work @default.
- W4306848270 citedByCount "1" @default.
- W4306848270 countsByYear W43068482702023 @default.
- W4306848270 crossrefType "journal-article" @default.
- W4306848270 hasAuthorship W4306848270A5016437475 @default.
- W4306848270 hasAuthorship W4306848270A5073598721 @default.
- W4306848270 hasAuthorship W4306848270A5088580550 @default.
- W4306848270 hasBestOaLocation W43068482701 @default.
- W4306848270 hasConcept C100970517 @default.
- W4306848270 hasConcept C110872660 @default.
- W4306848270 hasConcept C122523270 @default.
- W4306848270 hasConcept C127313418 @default.
- W4306848270 hasConcept C132651083 @default.
- W4306848270 hasConcept C13280743 @default.
- W4306848270 hasConcept C143050476 @default.
- W4306848270 hasConcept C149677717 @default.
- W4306848270 hasConcept C18903297 @default.
- W4306848270 hasConcept C205649164 @default.
- W4306848270 hasConcept C2777427081 @default.
- W4306848270 hasConcept C35187779 @default.
- W4306848270 hasConcept C39432304 @default.
- W4306848270 hasConcept C58640448 @default.