Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306869258> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4306869258 endingPage "2410" @default.
- W4306869258 startingPage "2403" @default.
- W4306869258 abstract "No AccessEngineering NotesImprovement of Constellation Orbit Determination Through the Incorporation of Intersatellite RangingByron Davis and Brian C. GunterByron DavisGeorgia Institute of Technology, Atlanta, Georgia 30332*Graduate Research Assistant, 620 Cherry Street NW. Student Member AIAA.Search for more papers by this author and Brian C. GunterGeorgia Institute of Technology, Atlanta, Georgia 30332†Associate Professor, School of Aerospace Engineering, 620 Cherry Street NW. Associate Fellow AIAA.Search for more papers by this authorPublished Online:20 Oct 2022https://doi.org/10.2514/1.G006566SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Kang Z., Nagel P. and Pastor R., “Precise Orbit Determination for GRACE,” Advances in Space Research, Vol. 31, No. 8, 2003, pp. 1875–1881. https://doi.org/10.1016/S0273-1177(03)00159-5 Google Scholar[2] Joplin A. J., Lightsey E. G. and Humphreys T., “Development and Testing of a Miniaturized, Dual-Frequency, Software-Defined GPS Receiver for Space Applications,” Proceedings of the 2012 International Technical Meeting, Inst. of Navigation, Newport Beach, CA, Jan. 2012, pp. 1468–1525, https://radionavlab.ae.utexas.edu/images/stories/files/papers/joplin_itm_2012.pdf. Google Scholar[3] Gunter B., Encarnação J., Ditmar P. and Klees R., “Using Satellite Constellations for Improved Determination of Earth’s Time-Variable Gravity,” Journal of Spacecraft and Rockets, Vol. 48, No. 1, 2011, pp. 368–377. https://doi.org/10.2514/1.50926 AbstractGoogle Scholar[4] Li Y., Hoogeboom P., Dekker P. L., Mok S.-H., Guo J. and Buck C., “CubeSat Altimeter Constellation Systems: Performance Analysis and Methodology,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 60, No. 4, 2022, pp. 1–19. https://doi.org/10.1109/TGRS.2021.3100850 Google Scholar[5] Davis B. T. and Gunter B. C., “The Impact of Intersatellite Range Measurements on the Orbit Determination of Satellite Constellations,” AIAA/AAS Astrodynamics Specialist Conference, 2015, http://www.univelt.com/book=5346. Google Scholar[6] Davis B. T. and Gunter B. C., “The Augmentation of Precision Orbit Determination Through Constellation Intersatellite Ranging,” AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper 2016-5368, 2016. https://doi.org/10.2514/6.2016-5368 Google Scholar[7] Davis B. T. and Gunter B. C., “The Improvement of Satellite Constellation GNSS Orbit Determination through the Incorporation of Intersatellite Ranging Measurements,” Proceedings of the 2021 AAS/AIAA Space Flight Mechanics Meeting, Advances in the Astronautical Sciences, Vol. 176, Univelt, San Diego, CA, 2021, pp. 3039–3058, http://www.univelt.com/book=8650. Google Scholar[8] Gunter B. C., Davis B. T., Lightsey G. and Braun R. D., “The Ranging and Nanosatellite Guidance Experiment (RANGE),” Proceedings of the 30th Annual AIAA/USU Conference on Small Satellites, 2016, https://digitalcommons.usu.edu/smallsat/2016/S5GuidCont/3/. Google Scholar[9] Ely T. A., Murphy D., Seubert J., Bell J. and Kuang D., “Expected Performance of the Deep Space Atomic Clock Mission,” AAS/AIAA Space Flight Mechanics Meeting, AIAA, Reston, VA, 2014, p. 25, https://www.researchgate.net/publication/260036335_Expected_Performance_of_the_Deep_Space_Atomic_Clock_Mission. Google Scholar[10] Wiese D. and McCullough D., “Towards Deriving Temporal Sampling Requirements for Future Satellite Gravimetry Missions,” IAG IASPEI Joint Scientific Assembly, 2017, p. 34, http://hdl.handle.net/2014/48311. Google Scholar[11] Markley F., “Autonomous Navigation Using Landmark and Intersatellite Data,” Astrodynamics Conference, AIAA Paper 1984-1987, 1984. https://doi.org/10.2514/6.1984-1987 LinkGoogle Scholar[12] Psiaki M., “Autonomous Orbit Determination for Two Spacecraft from Relative Position Measurements,” Journal of Guidance, Control, and Dynamics, Vol. 22, No. 2, 1999, pp. 305–312. https://doi.org/10.2514/2.4379 LinkGoogle Scholar[13] Yim J. R., Crassidis J. L. and Junkins J. L., “Autonomous Orbit Navigation of Two Spacecraft System Using Relative Line of Sight Vector Measurements,” Advances in the Astronautical Sciences, Vol. 119, Jan. 2005, p. 14, https://www.researchgate.net/publication/228798335_Autonomous_orbit_navigation_of_two_spacecraft_system_using_relative_line_of_sight_vector_measurements. Google Scholar[14] Hill K. and Born G., “Autonomous Orbit Determination from Lunar Halo Orbits Using Crosslink Range,” Journal of Spacecraft and Rockets, Vol. 45, No. 5, 2008, pp. 548–553. https://doi.org/10.2514/1.32316 AbstractGoogle Scholar[15] Herring T., Floyd M. A. and King R. W., “Fundamentals of GPS for High-Precision Geodesy,” GPS Data Processing and Analysis with GAMIT/GLOBK/TRACK, Boulder, CO, June 2017, p. 26, http://web.mit.edu/mfloyd/www/courses/gg/201706_UNAVCO/. Google Scholar[16] Velazco J. and Boyraz O., “High Data Rate Inter-Satellite Omnidirectional Optical Communicator,” Proceedings of the Small Satellite Conference, 2018, p. 5, https://digitalcommons.usu.edu/smallsat/2018/all2018/419/. Google Scholar[17] Zhu F., Lu S., Sun J., Zhu R., Hou X. and Chen W., “Inter-Satellite Laser-Ranging Based on Intradyne Coherent Detection,” Applied Optics, Vol. 60, No. 28, 2021, p. 8930. https://doi.org/10.1364/AO.434807, https://www.osapublishing.org/abstract.cfm?URI=ao-60-28-8930. Google Scholar[18] Dahle C., Murböck M., Flechtner F., Dobslaw H., Michalak G., Neumayer K. H., Abrykosov O., Reinhold A., König R., Sulzbach R. and Förste C., “The GFZ GRACE RL06 Monthly Gravity Field Time Series: Processing Details and Quality Assessment,” Remote Sensing, Vol. 11, No. 18, 2019, p. 2116. https://doi.org/10.3390/rs11182116 CrossrefGoogle Scholar[19] Dobslaw H., Bergmann-Wolf I., Dill R., Forootan E., Klemann V., Kusche J. and Sasgen I., “The Updated ESA Earth System Model for Future Gravity Mission Simulation Studies,” Journal of Geodesy, Vol. 89, Jan. 2015, pp. 505–513. https://doi.org/10.1007/s00190-014-0787-8 Google Scholar[20] Dobslaw H., Bergmann-Wolf I., Forootan E., Dahle C., Mayer-Gürr T., Kusche J. and Flechtner F., “Modeling of Present-Day Atmosphere and Ocean Non-Tidal De-Aliasing Errors for Future Gravity Mission Simulations,” Journal of Geodesy, Vol. 90, Jan. 2016, pp. 423–436. https://doi.org/10.1007/s00190-015-0884-3 Google Scholar[21] Tapley B., Ries J., Bettadpur S., Chambers D., Cheng M., Condi F., Gunter B., Kang Z., Nagel P., Pekker T., Poole S. and Wang F., “GGM02–An Improved Earth Gravity Field Model from GRACE,” Journal of Geodesy, Vol. 79, June 2005, pp. 467–478. https://doi.org/10.1007/s00190-005-0480-z CrossrefGoogle Scholar[22] Ries J., Bettadpur S., Eanes R., Kang Z., Ko U., McCullough C., Nagel P., Pie N., Poole S., Richter T., Save H. and Tapley B., “The Development and Evaluation of the Global Gravity Model GGM05,” Rept. CSR-16-02, Center for Space Research, Austin, Texas, May 2016. https://doi.org/10.26153/tsw/1461 Google Scholar[23] Bruinsma S. L., “DTM-2012 Evaluation Report,” 2012, http://www.atmop.eu/public-documents/evaluation_report_dtm2012.pdf. Google Scholar[24] Bruinsma S. L., Sánchez-Ortiz N., Olmedo E. and Guijarro N., “Evaluation of the DTM-2009 Thermosphere Model for Benchmarking Purposes,” Journal of Space Weather and Space Climate, Vol. 2, Jan. 2012, p. A04, http://www.swsc-journal.org/10.1051/swsc/2012005. https://doi.org/10.1051/swsc/2012005 CrossrefGoogle Scholar[25] Springmann J. C. and Cutler J. W., “Flight Results of a Low-Cost Attitude Determination System,” Acta Astronautica, Vol. 99, Feb. 2014, pp. 201–214, https://linkinghub.elsevier.com/retrieve/pii/S0094576514000836. https://doi.org/10.1016/j.actaastro.2014.02.026 CrossrefGoogle Scholar[26] Blewitt G., “An Automatic Editing Algorithm for GPS Data,” Geophysical Research Letters, Vol. 17, No. 3, 1990, pp. 199–202. https://doi.org/10.1029/GL017i003p00199 CrossrefGoogle Scholar[27] Weiss J.-P., Hunt D., Schreiner W., VanHove T., Arnold D. and Jaeggi A., “COSMIC-2 Precise Orbit Determination Results,” March 2020, https://meetingorganizer.copernicus.org/EGU2020/EGU2020-20170.html. Google Scholar[28] Oh H., Park E., Lim H.-C., Lee S.-R., Choi J.-D. and Park C., “Orbit Determination of High-Earth-Orbit Satellites by Satellite Laser Ranging,” Journal of Astronomy and Space Sciences, Vol. 34, No. 4, 2017, pp. 271–280. https://doi.org/10.5140/JASS.2017.34.4.271 Google Scholar[29] Dave P. K., “Autonomous Navigation of Distributed Spacecraft Using Intersatellite Laser Communications,” Ph.D. Thesis, Massachusetts Inst. of Technology, Cambridge, MA, Feb. 2020, https://dspace.mit.edu/bitstream/handle/1721.1/128308/1201257970-MIT.pdf?sequence=3&isAllowed=y. Google Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Volume 45, Number 12December 2022 CrossmarkInformationCopyright © 2022 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerospace SciencesAstrodynamicsAstronauticsAstronomyAvionicsEarth Observation SatelliteGlobal Navigation Satellite SystemGuidance, Navigation, and Control SystemsOrbital ManeuversPlanetary Science and ExplorationPlanetsRemote Sensing and ApplicationsSatellite Navigation SystemsSatellitesSensorsSpace OrbitSpace Science and TechnologySpace Systems and VehiclesSpacecraft Guidance and ControlSpacecraftsTransducers KeywordsConstellationsOrbit DeterminationPODSatellitesEarthSatellite Remote SensingOptical SensorGPS SatellitesJet Propulsion LaboratoryGPSAcknowledgmentsPartial funding of this research was provided through a Jet Propulsion Laboratory (JPL) Strategic University Research Partnership (SURP) grant. This work was partially supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program (Grant 80NSSC17 K0359). This work was also partially funded by the Office of Naval Research, through award number N00014-16-1-2167. The authors acknowledge the use of JPL’s MONTE software for this research. Access to the anechoic chamber facilities at the Naval Research Laboratory for hardware characterization is also acknowledged. This research was supported in part through research cyberinfrastructure resources and services provided by the Partnership for an Advanced Computing Environment (PACE) at the Georgia Institute of Technology, Atlanta, Georgia. Thanks to Jill Seubert for providing some initial MONTE code for generation of GNSS observables, which was invaluable as a springboard to the current simulation environment. Thanks also to Eric Gustafson for JPL internship mentoring, feedback, and some really useful bits of code along the way. Thanks to the entire MONTE team at JPL.PDF Received9 November 2021Accepted16 August 2022Published online20 October 2022" @default.
- W4306869258 created "2022-10-20" @default.
- W4306869258 creator A5021060690 @default.
- W4306869258 creator A5088125706 @default.
- W4306869258 date "2022-12-01" @default.
- W4306869258 modified "2023-09-27" @default.
- W4306869258 title "Improvement of Constellation Orbit Determination Through the Incorporation of Intersatellite Ranging" @default.
- W4306869258 cites W1977431270 @default.
- W4306869258 cites W2000704453 @default.
- W4306869258 cites W2017298136 @default.
- W4306869258 cites W2028199218 @default.
- W4306869258 cites W2063174297 @default.
- W4306869258 cites W2068433718 @default.
- W4306869258 cites W2091758548 @default.
- W4306869258 cites W2103675713 @default.
- W4306869258 cites W2148305370 @default.
- W4306869258 cites W2165421589 @default.
- W4306869258 cites W2224040208 @default.
- W4306869258 cites W2972984441 @default.
- W4306869258 cites W3094570805 @default.
- W4306869258 cites W3200327696 @default.
- W4306869258 doi "https://doi.org/10.2514/1.g006566" @default.
- W4306869258 hasPublicationYear "2022" @default.
- W4306869258 type Work @default.
- W4306869258 citedByCount "1" @default.
- W4306869258 countsByYear W43068692582023 @default.
- W4306869258 crossrefType "journal-article" @default.
- W4306869258 hasAuthorship W4306869258A5021060690 @default.
- W4306869258 hasAuthorship W4306869258A5088125706 @default.
- W4306869258 hasConcept C107768556 @default.
- W4306869258 hasConcept C115051666 @default.
- W4306869258 hasConcept C121332964 @default.
- W4306869258 hasConcept C127313418 @default.
- W4306869258 hasConcept C127413603 @default.
- W4306869258 hasConcept C1276947 @default.
- W4306869258 hasConcept C13280743 @default.
- W4306869258 hasConcept C146978453 @default.
- W4306869258 hasConcept C19269812 @default.
- W4306869258 hasConcept C196644772 @default.
- W4306869258 hasConcept C199301463 @default.
- W4306869258 hasConcept C41008148 @default.
- W4306869258 hasConcept C60229501 @default.
- W4306869258 hasConcept C62649853 @default.
- W4306869258 hasConcept C70352696 @default.
- W4306869258 hasConcept C76155785 @default.
- W4306869258 hasConcept C94042562 @default.
- W4306869258 hasConceptScore W4306869258C107768556 @default.
- W4306869258 hasConceptScore W4306869258C115051666 @default.
- W4306869258 hasConceptScore W4306869258C121332964 @default.
- W4306869258 hasConceptScore W4306869258C127313418 @default.
- W4306869258 hasConceptScore W4306869258C127413603 @default.
- W4306869258 hasConceptScore W4306869258C1276947 @default.
- W4306869258 hasConceptScore W4306869258C13280743 @default.
- W4306869258 hasConceptScore W4306869258C146978453 @default.
- W4306869258 hasConceptScore W4306869258C19269812 @default.
- W4306869258 hasConceptScore W4306869258C196644772 @default.
- W4306869258 hasConceptScore W4306869258C199301463 @default.
- W4306869258 hasConceptScore W4306869258C41008148 @default.
- W4306869258 hasConceptScore W4306869258C60229501 @default.
- W4306869258 hasConceptScore W4306869258C62649853 @default.
- W4306869258 hasConceptScore W4306869258C70352696 @default.
- W4306869258 hasConceptScore W4306869258C76155785 @default.
- W4306869258 hasConceptScore W4306869258C94042562 @default.
- W4306869258 hasFunder F4320337345 @default.
- W4306869258 hasIssue "12" @default.
- W4306869258 hasLocation W43068692581 @default.
- W4306869258 hasOpenAccess W4306869258 @default.
- W4306869258 hasPrimaryLocation W43068692581 @default.
- W4306869258 hasRelatedWork W1514090327 @default.
- W4306869258 hasRelatedWork W2054156196 @default.
- W4306869258 hasRelatedWork W2215536826 @default.
- W4306869258 hasRelatedWork W2352112953 @default.
- W4306869258 hasRelatedWork W2353923652 @default.
- W4306869258 hasRelatedWork W2358431995 @default.
- W4306869258 hasRelatedWork W2391759637 @default.
- W4306869258 hasRelatedWork W2787082731 @default.
- W4306869258 hasRelatedWork W2969475090 @default.
- W4306869258 hasRelatedWork W4376482762 @default.
- W4306869258 hasVolume "45" @default.
- W4306869258 isParatext "false" @default.
- W4306869258 isRetracted "false" @default.
- W4306869258 workType "article" @default.