Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306869349> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4306869349 endingPage "151" @default.
- W4306869349 startingPage "141" @default.
- W4306869349 abstract "No AccessEngineering NotesDynamic Modeling and Distributed Control of Asymmetric Flexible SpacecraftKai Cao, Shuang Li, YinKang Li and Ming XinKai CaoNanjing University of Aeronautics and Astronautics, 210016 Nanjing, People’s Republic of China*Ph.D. Candidate, Department of Astronautics Engineering.Search for more papers by this author, Shuang Li https://orcid.org/0000-0001-9142-5036Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, People’s Republic of China†Professor, Department of Astronautics Engineering; . Member AIAA (Corresponding Author).Search for more papers by this author, YinKang LiNanjing University of Aeronautics and Astronautics, 210016 Nanjing, People’s Republic of China*Ph.D. Candidate, Department of Astronautics Engineering.Search for more papers by this author and Ming Xin https://orcid.org/0000-0002-9947-6986University of Missouri, Columbia, Missouri 65211‡Professor, Department of Mechanical and Aerospace Engineering; . Associate Fellow AIAA.Search for more papers by this authorPublished Online:20 Oct 2022https://doi.org/10.2514/1.G006919SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Cao K., Li S., She Y. C., Biggs J. D., Liu Y. F. and Bian L. L., “Dynamics and On-Orbit Assembly Strategies for an Orb-Shaped Solar Array,” Acta Astronautica, Vol. 178, Jan. 2021, pp. 881–893. https://doi.org/10.1016/j.actaastro.2020.10.030 CrossrefGoogle Scholar[2] Meirovitch L., Fundamentals of Vibrations, McGraw–Hill, Boston, 2008, Chap. 8. Google Scholar[3] Gao H. J. and He W., “Modeling and Neural Network Control of a Flexible Beam with Unknown Spatiotemporally Varying Disturbance Using Assumed Mode Method,” Neurocomputing, Vol. 314, Nov. 2018, pp. 458–467. https://doi.org/10.1016/j.neucom.2018.06.039 Google Scholar[4] Liu H., Guo L. and Zhang Y. M., “An Anti-Disturbance PD Control Scheme for Attitude Control and Stabilization of Flexible Spacecrafts,” Nonlinear Dynamics, Vol. 67, No. 3, 2012, pp. 2081–2088. https://doi.org/10.1007/s11071-011-0130-3 CrossrefGoogle Scholar[5] Halverson R. D. and Caverly R., “Attitude Control of a Spacecraft Flexible Appendage Using Parallel Feedforward Control,” AIAA Scitech 2020 Forum, AIAA Paper 2020-0716, 2020. https://doi.org/10.2514/6.2020-0716 Google Scholar[6] Kida T., Yamaguchi I., Chida Y. and Sekiguchi T., “On-Orbit Robust Control Experiment of Flexible Spacecraft ETS-VI,” Journal of Guidance, Control, and Dynamics, Vol. 20, No. 5, 1997, pp. 865–872. https://doi.org/10.2514/2.4159 LinkGoogle Scholar[7] Nakka Y. K., Chung S. J., Allison J. T., Aldrich J. B. and Alvarez-Salazar O. S., “Nonlinear Attitude Control of a Spacecraft with Distributed Actuation of Solar Arrays,” Journal of Guidance, Control, and Dynamics, Vol. 42, No. 3, 2019, pp. 458–475. https://doi.org/10.2514/1.G003478 LinkGoogle Scholar[8] Balas M. J., “Direct Velocity Feedback Control of Large Space Structures,” Journal of Guidance and Control, Vol. 2, No. 3, 1979, pp. 252–253. https://doi.org/10.2514/3.55869 LinkGoogle Scholar[9] Jia S. Y. and Shan J. J., “Optimal Actuator Placement for Constrained Gyroelastic Beam Considering Control Spillover,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 9, 2018, pp. 2073–2081. https://doi.org/10.2514/1.G003560 LinkGoogle Scholar[10] Benhabib R. J., Iwens R. P. and Jackson R. L., “Stability of Large Space Structure Control Systems Using Positivity Concepts,” Journal of Guidance and Control, Vol. 4, No. 5, 1981, pp. 487–494. https://doi.org/10.2514/3.56100 LinkGoogle Scholar[11] Gevarter W. B., “Basic Relations for Control of Flexible Vehicles,” AIAA Journal, Vol. 8, No. 4, 1970, pp. 666–672. https://doi.org/10.2514/3.5739 LinkGoogle Scholar[12] Zhu W., Yang F. and Rui X., “Robust Independent Modal Space Control of A Coupled Nano-Positioning Piezo-Stage,” Mechanical Systems and Signal Processing, Vol. 106, June 2018, pp. 466–478. https://doi.org/10.1016/j.ymssp.2018.01.016 Google Scholar[13] Liu Y. L., Wu S. N., Zhang K. M. and Wu Z. G., “Parametrical Excitation Model for Rigid-Flexible Coupling System of Solar Power Satellite,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 10, 2017, pp. 2674–2681. https://doi.org/10.2514/1.G002739 LinkGoogle Scholar[14] He W., Ge S. S., How B. V. E., Choo Y. S. and Hong K. S., “Robust Adaptive Boundary Control of a Flexible Marine Riser with Vessel Dynamics,” Automatica, Vol. 47, No. 4, 2011, pp. 722–732. https://doi.org/10.1016/j.automatica.2011.01.064 Google Scholar[15] Chen T., Wen H. and Wei Z. T., “Distributed Attitude Tracking for Multiple Flexible Spacecraft Described by Partial Differential Equations,” Acta Astronautica, Vol. 159, June 2019, pp. 637–645. https://doi.org/10.1016/j.actaastro.2019.02.010 CrossrefGoogle Scholar[16] Rad H. K., Salarieh H., Alasty A. and Vatankhah R., “Boundary Control of Anti-Symmetric Vibration of Satellite with Flexible Appendages in Planar Motion with Exponential Stability,” Acta Astronautica, Vol. 147, June 2018, pp. 219–230. https://doi.org/10.1016/j.actaastro.2018.03.050 CrossrefGoogle Scholar[17] Rad H. K., Salarieh H., Alasty A. and Vatankhah R., “Boundary Control of Flexible Satellite Vibration in Planar Motion,” Journal of Sound and Vibration, Vol. 432, Oct. 2018, pp. 549–568. https://doi.org/10.1016/j.jsv.2018.06.052 CrossrefGoogle Scholar[18] Ma J. T., Wen H. and Jin D. P., “PDE Model-Based Boundary Control of a Spacecraft with Double Flexible Appendages under Prescribed Performance,” Advances in Space Research, Vol. 65, No. 1, 2020, pp. 586–597. https://doi.org/10.1016/j.asr.2019.09.050 CrossrefGoogle Scholar[19] Liu Z. J., Liu J. K. and He W., “Adaptive Boundary Control of a Flexible Manipulator with Input Saturation,” International Journal of Control, Vol. 89, No. 6, 2016, pp. 1191–1202. https://doi.org/10.1080/00207179.2015.1125022 CrossrefGoogle Scholar[20] Yang H. J., Liu J. K. and Lan X., “Observer Design for a Flexible-Link Manipulator with PDE Model,” Journal of Sound and Vibration, Vol. 341, April 2015, pp. 237–245. https://doi.org/10.1016/j.jsv.2014.12.033 Google Scholar[21] Martin S., Rud M., Scowen P., Stern D., Nissen J. and Krist J., “HabEx Space Telescope Optical System,” UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts VIII. Vol. 10398, International Soc. for Optics and Photonics, 2017, Paper 1039805. https://doi.org/10.1117/12.2275191 Google Scholar[22] Nakamura T., Bando N., Sakai S.-I. and Saito H., “Vibration Suppression Effect of Translational Motion Control for Asymmetric Flexible Satellite,” 2010 11th IEEE International Workshop on Advanced Motion Control (AMC), Inst. of Electrical and Electronics Engineers, New York, March 2010, pp. 667–672. https://doi.org/10.1109/AMC.2010.5464052 Google Scholar[23] Liu Y., Chen X. B., Mei Y. F. and Wu Y. L., “Observer-Based Boundary Control for an Asymmetric Output-Constrained Flexible Robotic Manipulator,” Science China-Information Sciences, Vol. 65, No. 3, 2022, Paper 139203. https://doi.org/10.1007/s11432-019-2893-y Google Scholar[24] Liu Y., Mei Y., Cai H., He C., Liu T. and Hu G., “Asymmetric Input-Output Constraint Control of a Flexible Variable-Length Rotary Crane Arm,” IEEE Transactions on Cybernetics, Vol. 52, No. 10, 2022, pp. 10582–10591. https://doi.org/10.1109/TCYB.2021.3055151 Google Scholar[25] Liu Y., Chen X., Wu Y., Cai H. and Yokoi H., “Adaptive Neural Network Control of a Flexible Spacecraft Subject to Input Nonlinearity and Asymmetric Output Constraint,” IEEE Transactions on Neural Networks and Learning Systems, Vol. PP, May 2021, pp. 1–9. https://doi.org/10.1109/TNNLS.2021.3072907 Google Scholar[26] Gao S., Zhang Y. and Liu J., “Adaptive Fault-Tolerant Boundary Control for a Flexible Aircraft Wing with Input Constraints,” Aerospace Science and Technology, Vol. 90, Sept. 2019, pp. 34–43. https://doi.org/10.1016/j.ast.2019.04.034 Google Scholar[27] Ataei M. M., Salarieh H., Pishkenari H. N. and Jalili H., “Boundary Control Design for Vibration Suppression and Attitude Control of Flexible Satellites with Multi-Section Appendages,” Acta Astronautica, Vol. 173, Aug. 2020, pp. 22–30. https://doi.org/10.1016/j.actaastro.2020.04.001 CrossrefGoogle Scholar[28] Liu Y., Fu Y., He W. and Hui Q., “Modeling and Observer-Based Vibration Control of a Flexible Spacecraft With External Disturbances,” IEEE Transactions on Industrial Electronics, Vol. 66, No. 11, 2019, pp. 8648–8658. https://doi.org/10.1109/TIE.2018.2884172 Google Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Volume 46, Number 1January 2023 CrossmarkInformationCopyright © 2022 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. AcknowledgmentsThis work was partially supported by the National Natural Science Foundation of China (Grant No. 11972182), and sponsored by Qing Lan Project, Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX21_0233). The authors fully appreciate their financial support. The authors would like to thank Xiaowei Zhang for his help during the revision process of the paper.PDF Received26 April 2022Accepted22 August 2022Published online20 October 2022" @default.
- W4306869349 created "2022-10-20" @default.
- W4306869349 creator A5038294926 @default.
- W4306869349 creator A5056056494 @default.
- W4306869349 creator A5061084605 @default.
- W4306869349 creator A5083549815 @default.
- W4306869349 date "2023-01-01" @default.
- W4306869349 modified "2023-09-25" @default.
- W4306869349 title "Dynamic Modeling and Distributed Control of Asymmetric Flexible Spacecraft" @default.
- W4306869349 cites W1969602414 @default.
- W4306869349 cites W2001801053 @default.
- W4306869349 cites W2008217681 @default.
- W4306869349 cites W2014636410 @default.
- W4306869349 cites W2109073443 @default.
- W4306869349 cites W2170139439 @default.
- W4306869349 cites W2201855490 @default.
- W4306869349 cites W2607997736 @default.
- W4306869349 cites W2796398190 @default.
- W4306869349 cites W2801151901 @default.
- W4306869349 cites W2810209207 @default.
- W4306869349 cites W2837309133 @default.
- W4306869349 cites W2875073376 @default.
- W4306869349 cites W2905039588 @default.
- W4306869349 cites W2914093421 @default.
- W4306869349 cites W2941170919 @default.
- W4306869349 cites W2979655125 @default.
- W4306869349 cites W3015594382 @default.
- W4306869349 cites W3093053571 @default.
- W4306869349 cites W3153522349 @default.
- W4306869349 cites W2187468331 @default.
- W4306869349 doi "https://doi.org/10.2514/1.g006919" @default.
- W4306869349 hasPublicationYear "2023" @default.
- W4306869349 type Work @default.
- W4306869349 citedByCount "1" @default.
- W4306869349 countsByYear W43068693492023 @default.
- W4306869349 crossrefType "journal-article" @default.
- W4306869349 hasAuthorship W4306869349A5038294926 @default.
- W4306869349 hasAuthorship W4306869349A5056056494 @default.
- W4306869349 hasAuthorship W4306869349A5061084605 @default.
- W4306869349 hasAuthorship W4306869349A5083549815 @default.
- W4306869349 hasConcept C127413603 @default.
- W4306869349 hasConcept C133731056 @default.
- W4306869349 hasConcept C146978453 @default.
- W4306869349 hasConcept C154945302 @default.
- W4306869349 hasConcept C2775924081 @default.
- W4306869349 hasConcept C29829512 @default.
- W4306869349 hasConcept C41008148 @default.
- W4306869349 hasConcept C47446073 @default.
- W4306869349 hasConcept C551646850 @default.
- W4306869349 hasConceptScore W4306869349C127413603 @default.
- W4306869349 hasConceptScore W4306869349C133731056 @default.
- W4306869349 hasConceptScore W4306869349C146978453 @default.
- W4306869349 hasConceptScore W4306869349C154945302 @default.
- W4306869349 hasConceptScore W4306869349C2775924081 @default.
- W4306869349 hasConceptScore W4306869349C29829512 @default.
- W4306869349 hasConceptScore W4306869349C41008148 @default.
- W4306869349 hasConceptScore W4306869349C47446073 @default.
- W4306869349 hasConceptScore W4306869349C551646850 @default.
- W4306869349 hasFunder F4320321001 @default.
- W4306869349 hasIssue "1" @default.
- W4306869349 hasLocation W43068693491 @default.
- W4306869349 hasOpenAccess W4306869349 @default.
- W4306869349 hasPrimaryLocation W43068693491 @default.
- W4306869349 hasRelatedWork W1964939189 @default.
- W4306869349 hasRelatedWork W1966945977 @default.
- W4306869349 hasRelatedWork W1971453508 @default.
- W4306869349 hasRelatedWork W1980908987 @default.
- W4306869349 hasRelatedWork W1989155237 @default.
- W4306869349 hasRelatedWork W1996193880 @default.
- W4306869349 hasRelatedWork W2020861357 @default.
- W4306869349 hasRelatedWork W2067622863 @default.
- W4306869349 hasRelatedWork W2073147078 @default.
- W4306869349 hasRelatedWork W2125521163 @default.
- W4306869349 hasVolume "46" @default.
- W4306869349 isParatext "false" @default.
- W4306869349 isRetracted "false" @default.
- W4306869349 workType "article" @default.