Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306871694> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4306871694 endingPage "112154" @default.
- W4306871694 startingPage "112154" @default.
- W4306871694 abstract "Postharvest blueberry softening was investigated by observing microstructural changes of blueberry in spectrum and texture using hyperspectral microscope imaging and deep learning technology. More specifically, textural features were examined from grey-level co-occurrence matrix (GLCM) computed from hypercube of blueberry cells. GLCMs predetermined with nine different pixel distances and four orientations were extracted from three input image sources (i.e., single-band images of 530 nm, 680 nm, and double-band images pairing of these two bands). The optimum GLCM features were mean, variance, homogeneity, contrast, dissimilarity, entropy, energy, and correlation. With these GLCM features, the parenchyma cell textures were visually and statistically characterized over different firmness. To confirm the effectiveness of textural features, Fusion-Nets combining 1D-CNN for spectra and ResNet50 for GLCMs were trained and evaluated with four different distances (i.e., 16, 32, 64, 128 in pixels) and three image sources. According to the results of textural feature analysis, contrast, entropy, variance, dissimilarity, homogeneity, and energy were different (p < 0.05) over two firmness categories (1.96–3.92 N and 3.92–9.81 N in shear force) for average GLCMs with 16–64 pixel distance calculated from a single-band image source (i.e., 530 nm or 680 nm band images). A Fusion-Net with spectra of cell walls and GLCMs with 64-pixel distance from 680 nm band images distinguished the firmness categories with 95% classification accuracy and 90% Matthew's correlation coefficient (MCC), which outperformed the previous Fusion-Net with spectra and band images, which were 85% test accuracy with 73% test MCC. While implying a close relationship between blueberry softening and textural change in hyperspectral images of blueberry microstructures, these results provide a basis for further research on development of non-destructive methods to measure blueberry firmness with macroscopic imaging platforms." @default.
- W4306871694 created "2022-10-20" @default.
- W4306871694 creator A5029497609 @default.
- W4306871694 creator A5040500455 @default.
- W4306871694 creator A5043136934 @default.
- W4306871694 creator A5046079160 @default.
- W4306871694 creator A5070670946 @default.
- W4306871694 date "2023-01-01" @default.
- W4306871694 modified "2023-10-09" @default.
- W4306871694 title "Improving blueberry firmness classification with spectral and textural features of microstructures using hyperspectral microscope imaging and deep learning" @default.
- W4306871694 cites W1967881448 @default.
- W4306871694 cites W2018890366 @default.
- W4306871694 cites W2033363582 @default.
- W4306871694 cites W2043521848 @default.
- W4306871694 cites W2044465660 @default.
- W4306871694 cites W2047890833 @default.
- W4306871694 cites W2052625270 @default.
- W4306871694 cites W2078645421 @default.
- W4306871694 cites W2085320193 @default.
- W4306871694 cites W2115576099 @default.
- W4306871694 cites W2158237306 @default.
- W4306871694 cites W2194775991 @default.
- W4306871694 cites W2282821441 @default.
- W4306871694 cites W2505877221 @default.
- W4306871694 cites W2752133961 @default.
- W4306871694 cites W2782651872 @default.
- W4306871694 cites W2800736425 @default.
- W4306871694 cites W2915754718 @default.
- W4306871694 cites W2963957709 @default.
- W4306871694 cites W2972571948 @default.
- W4306871694 cites W2997422821 @default.
- W4306871694 cites W2999309192 @default.
- W4306871694 cites W3005887317 @default.
- W4306871694 cites W3006292418 @default.
- W4306871694 cites W3048123412 @default.
- W4306871694 cites W3096684426 @default.
- W4306871694 cites W3102564565 @default.
- W4306871694 cites W3116901767 @default.
- W4306871694 cites W3136334144 @default.
- W4306871694 cites W3196594788 @default.
- W4306871694 cites W4206430654 @default.
- W4306871694 cites W4220798302 @default.
- W4306871694 doi "https://doi.org/10.1016/j.postharvbio.2022.112154" @default.
- W4306871694 hasPublicationYear "2023" @default.
- W4306871694 type Work @default.
- W4306871694 citedByCount "7" @default.
- W4306871694 countsByYear W43068716942023 @default.
- W4306871694 crossrefType "journal-article" @default.
- W4306871694 hasAuthorship W4306871694A5029497609 @default.
- W4306871694 hasAuthorship W4306871694A5040500455 @default.
- W4306871694 hasAuthorship W4306871694A5043136934 @default.
- W4306871694 hasAuthorship W4306871694A5046079160 @default.
- W4306871694 hasAuthorship W4306871694A5070670946 @default.
- W4306871694 hasBestOaLocation W43068716941 @default.
- W4306871694 hasConcept C138885662 @default.
- W4306871694 hasConcept C153180895 @default.
- W4306871694 hasConcept C154945302 @default.
- W4306871694 hasConcept C158525013 @default.
- W4306871694 hasConcept C159078339 @default.
- W4306871694 hasConcept C160633673 @default.
- W4306871694 hasConcept C185592680 @default.
- W4306871694 hasConcept C33923547 @default.
- W4306871694 hasConcept C41008148 @default.
- W4306871694 hasConcept C41895202 @default.
- W4306871694 hasConceptScore W4306871694C138885662 @default.
- W4306871694 hasConceptScore W4306871694C153180895 @default.
- W4306871694 hasConceptScore W4306871694C154945302 @default.
- W4306871694 hasConceptScore W4306871694C158525013 @default.
- W4306871694 hasConceptScore W4306871694C159078339 @default.
- W4306871694 hasConceptScore W4306871694C160633673 @default.
- W4306871694 hasConceptScore W4306871694C185592680 @default.
- W4306871694 hasConceptScore W4306871694C33923547 @default.
- W4306871694 hasConceptScore W4306871694C41008148 @default.
- W4306871694 hasConceptScore W4306871694C41895202 @default.
- W4306871694 hasFunder F4320306114 @default.
- W4306871694 hasFunder F4320334884 @default.
- W4306871694 hasLocation W43068716941 @default.
- W4306871694 hasOpenAccess W4306871694 @default.
- W4306871694 hasPrimaryLocation W43068716941 @default.
- W4306871694 hasRelatedWork W2028628118 @default.
- W4306871694 hasRelatedWork W2067727414 @default.
- W4306871694 hasRelatedWork W2076134148 @default.
- W4306871694 hasRelatedWork W2136485282 @default.
- W4306871694 hasRelatedWork W2529401893 @default.
- W4306871694 hasRelatedWork W2546645752 @default.
- W4306871694 hasRelatedWork W2546871836 @default.
- W4306871694 hasRelatedWork W3034655717 @default.
- W4306871694 hasRelatedWork W3173596272 @default.
- W4306871694 hasRelatedWork W352466941 @default.
- W4306871694 hasVolume "195" @default.
- W4306871694 isParatext "false" @default.
- W4306871694 isRetracted "false" @default.
- W4306871694 workType "article" @default.