Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306873633> ?p ?o ?g. }
- W4306873633 endingPage "715" @default.
- W4306873633 startingPage "708" @default.
- W4306873633 abstract "The aim of the present work was to investigate the features of the elderly population aged ≥65 yrs and with deteriorative mild cognitive impairment (MCI) due to Alzheimer's disease (AD) to establish a prediction model.A total of 105 patients aged ≥65 yrs and with MCI were followed up, with a collection of 357 features, which were derived from the demographic characteristics, hematological indicators (serum Aβ1-40, Aβ1-42, P-tau and MCP-1 levels, APOE gene), and multimodal brain Magnetic Resonance Imaging (MRI) imaging indicators of 116 brain regions (ADC, FA and CBF values). Cognitive function was followed up for 2 yrs. Based on the Python platform Anaconda, 105 patients were randomly divided into a training set (70%) and a test set (30%) by analyzing all features through a random forest algorithm, and a prediction model was established for the form of rapidly deteriorating MCI.Of the 105 patients enrolled, 41 deteriorated, and 64 did not come within 2 yrs. Model 1 was established based on demographic characteristics, hematological indicators and multi-modal MRI image features, the accuracy of the training set being 100%, the accuracy of the test set 64%, sensitivity 50%, specificity 67%, and AUC 0.72. Model 2 was based on the first five features (APOE4 gene, FA value of left fusiform gyrus, FA value of left inferior temporal gyrus, FA value of left parahippocampal gyrus, ADC value of right calcarine fissure as surrounding cortex), the accuracy of the training set being 100%, the accuracy of the test set 85%, sensitivity 91%, specificity 80% and AUC 0.96. Model 3 was based on the first four features of Model 1, the accuracy of the training set is 100%, the accuracy of the test set 97%, sensitivity100%, specificity 95% and AUC 0.99. Model 4 was based on the first three characteristics of Model 1, the accuracy of the training set being 100%, the accuracy of the test set 94%, sensitivity 92%, specificity 94% and AUC 0.96. Model 5 was based on the hematological characteristics, the accuracy of the training set is 100%, the accuracy of the test set 91%, sensitivity 100%, specificity 88% and AUC 0.97. The models based on the demographic characteristics, imaging characteristics FA, CBF and ADC values had lower sensitivity and specificity.Model 3, which has four important predictive characteristics, can predict the rapidly deteriorating MCI due to AD in the community." @default.
- W4306873633 created "2022-10-20" @default.
- W4306873633 creator A5019252993 @default.
- W4306873633 creator A5025891691 @default.
- W4306873633 creator A5026398387 @default.
- W4306873633 creator A5050458288 @default.
- W4306873633 creator A5053204257 @default.
- W4306873633 creator A5075317332 @default.
- W4306873633 creator A5083176555 @default.
- W4306873633 date "2022-09-01" @default.
- W4306873633 modified "2023-09-30" @default.
- W4306873633 title "Machine-Based Learning Shifting to Prediction Model of Deteriorative MCI Due to Alzheimer’s Disease - A Two-Year Follow-Up Investigation" @default.
- W4306873633 cites W1644143258 @default.
- W4306873633 cites W1970928383 @default.
- W4306873633 cites W2147776113 @default.
- W4306873633 cites W2148080316 @default.
- W4306873633 cites W2743373469 @default.
- W4306873633 cites W2793391328 @default.
- W4306873633 cites W2798054687 @default.
- W4306873633 cites W2921518676 @default.
- W4306873633 cites W2923418412 @default.
- W4306873633 cites W2942184415 @default.
- W4306873633 cites W2945689653 @default.
- W4306873633 cites W2984743962 @default.
- W4306873633 cites W2992989791 @default.
- W4306873633 cites W3016851665 @default.
- W4306873633 cites W3021727737 @default.
- W4306873633 cites W3038780555 @default.
- W4306873633 cites W3082960444 @default.
- W4306873633 cites W3105517137 @default.
- W4306873633 cites W3120649124 @default.
- W4306873633 cites W3126831744 @default.
- W4306873633 cites W3129233394 @default.
- W4306873633 cites W3141797079 @default.
- W4306873633 cites W3143220268 @default.
- W4306873633 cites W3145812136 @default.
- W4306873633 cites W3164914126 @default.
- W4306873633 cites W3189256770 @default.
- W4306873633 cites W3201450302 @default.
- W4306873633 cites W3204913684 @default.
- W4306873633 cites W3210505114 @default.
- W4306873633 cites W977923474 @default.
- W4306873633 doi "https://doi.org/10.2174/1567205020666221019122049" @default.
- W4306873633 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36278469" @default.
- W4306873633 hasPublicationYear "2022" @default.
- W4306873633 type Work @default.
- W4306873633 citedByCount "1" @default.
- W4306873633 countsByYear W43068736332023 @default.
- W4306873633 crossrefType "journal-article" @default.
- W4306873633 hasAuthorship W4306873633A5019252993 @default.
- W4306873633 hasAuthorship W4306873633A5025891691 @default.
- W4306873633 hasAuthorship W4306873633A5026398387 @default.
- W4306873633 hasAuthorship W4306873633A5050458288 @default.
- W4306873633 hasAuthorship W4306873633A5053204257 @default.
- W4306873633 hasAuthorship W4306873633A5075317332 @default.
- W4306873633 hasAuthorship W4306873633A5083176555 @default.
- W4306873633 hasConcept C126322002 @default.
- W4306873633 hasConcept C126838900 @default.
- W4306873633 hasConcept C143409427 @default.
- W4306873633 hasConcept C15744967 @default.
- W4306873633 hasConcept C169760540 @default.
- W4306873633 hasConcept C169900460 @default.
- W4306873633 hasConcept C2777655717 @default.
- W4306873633 hasConcept C2778048536 @default.
- W4306873633 hasConcept C2778186239 @default.
- W4306873633 hasConcept C2779134260 @default.
- W4306873633 hasConcept C2780910289 @default.
- W4306873633 hasConcept C2781099131 @default.
- W4306873633 hasConcept C2984915365 @default.
- W4306873633 hasConcept C548259974 @default.
- W4306873633 hasConcept C71924100 @default.
- W4306873633 hasConceptScore W4306873633C126322002 @default.
- W4306873633 hasConceptScore W4306873633C126838900 @default.
- W4306873633 hasConceptScore W4306873633C143409427 @default.
- W4306873633 hasConceptScore W4306873633C15744967 @default.
- W4306873633 hasConceptScore W4306873633C169760540 @default.
- W4306873633 hasConceptScore W4306873633C169900460 @default.
- W4306873633 hasConceptScore W4306873633C2777655717 @default.
- W4306873633 hasConceptScore W4306873633C2778048536 @default.
- W4306873633 hasConceptScore W4306873633C2778186239 @default.
- W4306873633 hasConceptScore W4306873633C2779134260 @default.
- W4306873633 hasConceptScore W4306873633C2780910289 @default.
- W4306873633 hasConceptScore W4306873633C2781099131 @default.
- W4306873633 hasConceptScore W4306873633C2984915365 @default.
- W4306873633 hasConceptScore W4306873633C548259974 @default.
- W4306873633 hasConceptScore W4306873633C71924100 @default.
- W4306873633 hasFunder F4320328346 @default.
- W4306873633 hasIssue "10" @default.
- W4306873633 hasLocation W43068736331 @default.
- W4306873633 hasLocation W43068736332 @default.
- W4306873633 hasOpenAccess W4306873633 @default.
- W4306873633 hasPrimaryLocation W43068736331 @default.
- W4306873633 hasRelatedWork W1967398233 @default.
- W4306873633 hasRelatedWork W2019330059 @default.
- W4306873633 hasRelatedWork W2029886133 @default.
- W4306873633 hasRelatedWork W2057007254 @default.
- W4306873633 hasRelatedWork W2076830654 @default.
- W4306873633 hasRelatedWork W2105137911 @default.