Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306920631> ?p ?o ?g. }
- W4306920631 endingPage "116116" @default.
- W4306920631 startingPage "116116" @default.
- W4306920631 abstract "In this paper, a novel deep learning technique, called multi-domain physics-informed neural network (M-PINN), is presented to solve forward and inverse problems of steady-state heat conduction in multilayer media. By adopting the domain decomposition technique, the multilayer media is first divided into several sub-domains. Then, the fully connected neural network is employed to approximate the temperature field on each sub-domain. Finally, a large total network framework is formed by combining subnetworks of all the mediums and using continuity conditions on interfaces. By training the total network, we can obtain the temperature distribution over the whole computational domain, including the interface between every two mediums. In the proposed method, the boundary conditions are introduced into the loss function, and the governing equation is used as a constrain item, which ensures the accuracy and stability of numerical approximation. As a meshless collocation technology, the M-PINN does not require tedious procedures such as meshing and numerical integration, and can freely address forward and inverse problems of thin body and coating structure. Several numerical examples are given to illustrate the efficiency and performance of the new method. Results indicate that the Swish and the Sigmoid functions are two better activation functions for such problems. As the number of nodes increases, the number of hidden layers does not need to be increased. Even for the thin film at nanoscale, the M-PINN still obtains accurate results. Moreover, the proposed scheme shows better performance than the traditional boundary element method in solving nonlinear heat conduction problems." @default.
- W4306920631 created "2022-10-21" @default.
- W4306920631 creator A5043897310 @default.
- W4306920631 creator A5077997004 @default.
- W4306920631 creator A5081722623 @default.
- W4306920631 creator A5086590149 @default.
- W4306920631 creator A5088190445 @default.
- W4306920631 date "2022-11-01" @default.
- W4306920631 modified "2023-10-18" @default.
- W4306920631 title "Multi-domain physics-informed neural network for solving forward and inverse problems of steady-state heat conduction in multilayer media" @default.
- W4306920631 cites W1148236876 @default.
- W4306920631 cites W1986661410 @default.
- W4306920631 cites W1992734430 @default.
- W4306920631 cites W1998824267 @default.
- W4306920631 cites W2014521770 @default.
- W4306920631 cites W2025405915 @default.
- W4306920631 cites W2065339630 @default.
- W4306920631 cites W2085541816 @default.
- W4306920631 cites W2197770859 @default.
- W4306920631 cites W2657631929 @default.
- W4306920631 cites W2753308909 @default.
- W4306920631 cites W2899283552 @default.
- W4306920631 cites W2968370549 @default.
- W4306920631 cites W3004360475 @default.
- W4306920631 cites W3023212902 @default.
- W4306920631 cites W3024871744 @default.
- W4306920631 cites W3033658573 @default.
- W4306920631 cites W3047202387 @default.
- W4306920631 cites W3083052998 @default.
- W4306920631 cites W3099969702 @default.
- W4306920631 cites W3117325409 @default.
- W4306920631 cites W3125599093 @default.
- W4306920631 cites W3128803576 @default.
- W4306920631 cites W3153200540 @default.
- W4306920631 cites W3185095713 @default.
- W4306920631 cites W3197818013 @default.
- W4306920631 cites W4212954647 @default.
- W4306920631 doi "https://doi.org/10.1063/5.0116038" @default.
- W4306920631 hasPublicationYear "2022" @default.
- W4306920631 type Work @default.
- W4306920631 citedByCount "9" @default.
- W4306920631 countsByYear W43069206312023 @default.
- W4306920631 crossrefType "journal-article" @default.
- W4306920631 hasAuthorship W4306920631A5043897310 @default.
- W4306920631 hasAuthorship W4306920631A5077997004 @default.
- W4306920631 hasAuthorship W4306920631A5081722623 @default.
- W4306920631 hasAuthorship W4306920631A5086590149 @default.
- W4306920631 hasAuthorship W4306920631A5088190445 @default.
- W4306920631 hasConcept C114614502 @default.
- W4306920631 hasConcept C119857082 @default.
- W4306920631 hasConcept C121332964 @default.
- W4306920631 hasConcept C134306372 @default.
- W4306920631 hasConcept C135628077 @default.
- W4306920631 hasConcept C14036430 @default.
- W4306920631 hasConcept C154945302 @default.
- W4306920631 hasConcept C172100665 @default.
- W4306920631 hasConcept C182310444 @default.
- W4306920631 hasConcept C184720557 @default.
- W4306920631 hasConcept C198880260 @default.
- W4306920631 hasConcept C28826006 @default.
- W4306920631 hasConcept C33923547 @default.
- W4306920631 hasConcept C36503486 @default.
- W4306920631 hasConcept C41008148 @default.
- W4306920631 hasConcept C50644808 @default.
- W4306920631 hasConcept C62354387 @default.
- W4306920631 hasConcept C62520636 @default.
- W4306920631 hasConcept C78458016 @default.
- W4306920631 hasConcept C80023036 @default.
- W4306920631 hasConcept C81388566 @default.
- W4306920631 hasConcept C86803240 @default.
- W4306920631 hasConcept C97355855 @default.
- W4306920631 hasConceptScore W4306920631C114614502 @default.
- W4306920631 hasConceptScore W4306920631C119857082 @default.
- W4306920631 hasConceptScore W4306920631C121332964 @default.
- W4306920631 hasConceptScore W4306920631C134306372 @default.
- W4306920631 hasConceptScore W4306920631C135628077 @default.
- W4306920631 hasConceptScore W4306920631C14036430 @default.
- W4306920631 hasConceptScore W4306920631C154945302 @default.
- W4306920631 hasConceptScore W4306920631C172100665 @default.
- W4306920631 hasConceptScore W4306920631C182310444 @default.
- W4306920631 hasConceptScore W4306920631C184720557 @default.
- W4306920631 hasConceptScore W4306920631C198880260 @default.
- W4306920631 hasConceptScore W4306920631C28826006 @default.
- W4306920631 hasConceptScore W4306920631C33923547 @default.
- W4306920631 hasConceptScore W4306920631C36503486 @default.
- W4306920631 hasConceptScore W4306920631C41008148 @default.
- W4306920631 hasConceptScore W4306920631C50644808 @default.
- W4306920631 hasConceptScore W4306920631C62354387 @default.
- W4306920631 hasConceptScore W4306920631C62520636 @default.
- W4306920631 hasConceptScore W4306920631C78458016 @default.
- W4306920631 hasConceptScore W4306920631C80023036 @default.
- W4306920631 hasConceptScore W4306920631C81388566 @default.
- W4306920631 hasConceptScore W4306920631C86803240 @default.
- W4306920631 hasConceptScore W4306920631C97355855 @default.
- W4306920631 hasFunder F4320321001 @default.
- W4306920631 hasFunder F4320324174 @default.
- W4306920631 hasIssue "11" @default.
- W4306920631 hasLocation W43069206311 @default.