Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306935863> ?p ?o ?g. }
- W4306935863 endingPage "103793" @default.
- W4306935863 startingPage "103793" @default.
- W4306935863 abstract "The presence of surface defects during abrasive belt grinding has a significant impact on the service performance of the parts, and the precise extraction of surface defect feature information helps to enhance grinding quality. However, in the face of abrasive belt grinding surfaces with complex texture features, it is a challenging task to effectively extract defect features and quantify the characterization. Therefore, this research suggests a quantitative explanation approach for surface scratch defects in abrasive belt grinding based on the deep learning theory. Facing challenging issues like complex texture background, defect size, area, and depth of grinding surface, the automatic segmentation model (FCSNet) concentrating on the multiscale channel and spatial attention information is proposed. To concentrate on the multiscale channel and spatial information and accurately detect the defect features, the residual atrous convolutional pyramid module with channel and spatial dual attention module (RAPCS) is constructed. To capture the global, long-range context characteristics and emphasize target regions, the convolutional block attention module (CBAM) concatenate block is included in the skip connections between the encoder path and the decoder path. To address the issue of foreground-background data imbalance caused by too small segmented target regions, the Focal Tversky hybrid loss function was adopted to guide the model to learn the difficult region of interest (ROI). At the end of the network structure, Grad-CAM is adopted and statistical knowledge is incorporated for a qualitative and quantitative visual explanation of the segmentation results. Finally, the dataset of surface scratch defects in abrasive belt grinding was established and numerous experiments were carried out based on this dataset. The results demonstrate that the proposed model has an excellent segmentation performance and defect quantitative explanation ability, achieving 98.80% in Accuracy, 81.72% in Recall, 81.81% in Precision, 81.42% in F1-score, and 81.87% in mIoU, respectively." @default.
- W4306935863 created "2022-10-21" @default.
- W4306935863 creator A5030046423 @default.
- W4306935863 creator A5049647847 @default.
- W4306935863 creator A5052676996 @default.
- W4306935863 creator A5077546663 @default.
- W4306935863 date "2023-01-01" @default.
- W4306935863 modified "2023-10-16" @default.
- W4306935863 title "FCSNet: A quantitative explanation method for surface scratch defects during belt grinding based on deep learning" @default.
- W4306935863 cites W1901129140 @default.
- W4306935863 cites W2100418722 @default.
- W4306935863 cites W2194775991 @default.
- W4306935863 cites W2295107390 @default.
- W4306935863 cites W2412782625 @default.
- W4306935863 cites W2560023338 @default.
- W4306935863 cites W2560311620 @default.
- W4306935863 cites W2751006454 @default.
- W4306935863 cites W2884561390 @default.
- W4306935863 cites W2884585870 @default.
- W4306935863 cites W2905338897 @default.
- W4306935863 cites W2962767316 @default.
- W4306935863 cites W2962858109 @default.
- W4306935863 cites W2962914239 @default.
- W4306935863 cites W2963794428 @default.
- W4306935863 cites W2964098128 @default.
- W4306935863 cites W2964309882 @default.
- W4306935863 cites W2979177724 @default.
- W4306935863 cites W2988448189 @default.
- W4306935863 cites W3008716721 @default.
- W4306935863 cites W3034109443 @default.
- W4306935863 cites W3035546112 @default.
- W4306935863 cites W3081941222 @default.
- W4306935863 cites W3126931166 @default.
- W4306935863 cites W3153381206 @default.
- W4306935863 cites W3170140136 @default.
- W4306935863 cites W3174490869 @default.
- W4306935863 cites W3210294555 @default.
- W4306935863 cites W3211193475 @default.
- W4306935863 cites W4220943253 @default.
- W4306935863 cites W4229051684 @default.
- W4306935863 doi "https://doi.org/10.1016/j.compind.2022.103793" @default.
- W4306935863 hasPublicationYear "2023" @default.
- W4306935863 type Work @default.
- W4306935863 citedByCount "4" @default.
- W4306935863 countsByYear W43069358632023 @default.
- W4306935863 crossrefType "journal-article" @default.
- W4306935863 hasAuthorship W4306935863A5030046423 @default.
- W4306935863 hasAuthorship W4306935863A5049647847 @default.
- W4306935863 hasAuthorship W4306935863A5052676996 @default.
- W4306935863 hasAuthorship W4306935863A5077546663 @default.
- W4306935863 hasConcept C108583219 @default.
- W4306935863 hasConcept C111919701 @default.
- W4306935863 hasConcept C127162648 @default.
- W4306935863 hasConcept C127313418 @default.
- W4306935863 hasConcept C138885662 @default.
- W4306935863 hasConcept C142575187 @default.
- W4306935863 hasConcept C151730666 @default.
- W4306935863 hasConcept C153180895 @default.
- W4306935863 hasConcept C154945302 @default.
- W4306935863 hasConcept C159985019 @default.
- W4306935863 hasConcept C191897082 @default.
- W4306935863 hasConcept C192562407 @default.
- W4306935863 hasConcept C2524010 @default.
- W4306935863 hasConcept C2776401178 @default.
- W4306935863 hasConcept C2777210771 @default.
- W4306935863 hasConcept C2777571299 @default.
- W4306935863 hasConcept C2779343474 @default.
- W4306935863 hasConcept C2780957350 @default.
- W4306935863 hasConcept C2781235140 @default.
- W4306935863 hasConcept C31258907 @default.
- W4306935863 hasConcept C31972630 @default.
- W4306935863 hasConcept C33923547 @default.
- W4306935863 hasConcept C41008148 @default.
- W4306935863 hasConcept C41895202 @default.
- W4306935863 hasConcept C81363708 @default.
- W4306935863 hasConcept C89600930 @default.
- W4306935863 hasConceptScore W4306935863C108583219 @default.
- W4306935863 hasConceptScore W4306935863C111919701 @default.
- W4306935863 hasConceptScore W4306935863C127162648 @default.
- W4306935863 hasConceptScore W4306935863C127313418 @default.
- W4306935863 hasConceptScore W4306935863C138885662 @default.
- W4306935863 hasConceptScore W4306935863C142575187 @default.
- W4306935863 hasConceptScore W4306935863C151730666 @default.
- W4306935863 hasConceptScore W4306935863C153180895 @default.
- W4306935863 hasConceptScore W4306935863C154945302 @default.
- W4306935863 hasConceptScore W4306935863C159985019 @default.
- W4306935863 hasConceptScore W4306935863C191897082 @default.
- W4306935863 hasConceptScore W4306935863C192562407 @default.
- W4306935863 hasConceptScore W4306935863C2524010 @default.
- W4306935863 hasConceptScore W4306935863C2776401178 @default.
- W4306935863 hasConceptScore W4306935863C2777210771 @default.
- W4306935863 hasConceptScore W4306935863C2777571299 @default.
- W4306935863 hasConceptScore W4306935863C2779343474 @default.
- W4306935863 hasConceptScore W4306935863C2780957350 @default.
- W4306935863 hasConceptScore W4306935863C2781235140 @default.
- W4306935863 hasConceptScore W4306935863C31258907 @default.
- W4306935863 hasConceptScore W4306935863C31972630 @default.
- W4306935863 hasConceptScore W4306935863C33923547 @default.