Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306940604> ?p ?o ?g. }
- W4306940604 abstract "Abstract Background In developing countries like Indonesia, limited resources for routine mass Coronavirus Disease 2019 (COVID-19) RT-PCR testing among healthcare workers leave them with a heightened risk of late detection and undetected infection, increasing the spread of the virus. Accessible and accurate methodologies must be developed to identify COVID-19 positive healthcare workers. This study aimed to investigate the application of machine learning classifiers to predict the risk of COVID-19 positivity in high-risk populations where resources are limited and accessibility is desired. Methods Two sets of models were built: one both trained and tested on data from healthcare workers in Jakarta and Semarang, and one trained on Jakarta healthcare workers and tested on Semarang healthcare workers. Models were assessed by the area under the receiver-operating-characteristic curve (AUC), average precision (AP), and Brier score (BS). Shapley additive explanations (SHAP) were used to analyze feature importance. 5,394 healthcare workers were included in the final dataset for this study. Results For the full model, the voting classifier composed of random forest and logistic regression was selected as the algorithm of choice and achieved training AUC (mean [Standard Deviation (SD)], 0.832 [0.033]) and AP (mean [SD], 0.476 [0.042]) and was high performing during testing with AUC and AP of 0.753 and 0.504 respectively. A voting classifier composed of a random forest and a XGBoost classifier was best performing during cross-validation for the Jakarta model, with AUC (mean [SD], 0.827 [0.023]), AP (mean [SD], 0.461 [0.025]). The performance when testing on the Semarang healthcare workers was AUC of 0.725 and AP of 0.582. Conclusions Our models yielded high predictive performance and can be used as an alternate COVID-19 screening methodology for healthcare workers in Indonesia, although the low adoption rate by partner hospitals despite its usefulness is a concern." @default.
- W4306940604 created "2022-10-21" @default.
- W4306940604 creator A5004110401 @default.
- W4306940604 creator A5004327763 @default.
- W4306940604 creator A5005511288 @default.
- W4306940604 creator A5015442125 @default.
- W4306940604 creator A5028224383 @default.
- W4306940604 creator A5030052681 @default.
- W4306940604 creator A5042794257 @default.
- W4306940604 creator A5042930394 @default.
- W4306940604 creator A5050323902 @default.
- W4306940604 creator A5055501401 @default.
- W4306940604 creator A5069013585 @default.
- W4306940604 creator A5074598500 @default.
- W4306940604 creator A5083369867 @default.
- W4306940604 creator A5084659737 @default.
- W4306940604 creator A5089134411 @default.
- W4306940604 date "2022-10-20" @default.
- W4306940604 modified "2023-09-27" @default.
- W4306940604 title "Application of Machine Learning in Prediction of COVID-19 Diagnosis for Indonesian Healthcare Workers" @default.
- W4306940604 cites W2056132907 @default.
- W4306940604 cites W2198216908 @default.
- W4306940604 cites W2911964244 @default.
- W4306940604 cites W3009299193 @default.
- W4306940604 cites W3011508296 @default.
- W4306940604 cites W3011762316 @default.
- W4306940604 cites W3012877202 @default.
- W4306940604 cites W3018197536 @default.
- W4306940604 cites W3023664661 @default.
- W4306940604 cites W3038925693 @default.
- W4306940604 cites W3041322293 @default.
- W4306940604 cites W3048479592 @default.
- W4306940604 cites W3087795675 @default.
- W4306940604 cites W3092228656 @default.
- W4306940604 cites W3092324640 @default.
- W4306940604 cites W3102476541 @default.
- W4306940604 cites W3119464161 @default.
- W4306940604 cites W3122601055 @default.
- W4306940604 cites W3133191822 @default.
- W4306940604 cites W3137551514 @default.
- W4306940604 cites W3163570493 @default.
- W4306940604 cites W3165312480 @default.
- W4306940604 cites W3182909528 @default.
- W4306940604 cites W3217489051 @default.
- W4306940604 doi "https://doi.org/10.21203/rs.3.rs-1996286/v2" @default.
- W4306940604 hasPublicationYear "2022" @default.
- W4306940604 type Work @default.
- W4306940604 citedByCount "0" @default.
- W4306940604 crossrefType "posted-content" @default.
- W4306940604 hasAuthorship W4306940604A5004110401 @default.
- W4306940604 hasAuthorship W4306940604A5004327763 @default.
- W4306940604 hasAuthorship W4306940604A5005511288 @default.
- W4306940604 hasAuthorship W4306940604A5015442125 @default.
- W4306940604 hasAuthorship W4306940604A5028224383 @default.
- W4306940604 hasAuthorship W4306940604A5030052681 @default.
- W4306940604 hasAuthorship W4306940604A5042794257 @default.
- W4306940604 hasAuthorship W4306940604A5042930394 @default.
- W4306940604 hasAuthorship W4306940604A5050323902 @default.
- W4306940604 hasAuthorship W4306940604A5055501401 @default.
- W4306940604 hasAuthorship W4306940604A5069013585 @default.
- W4306940604 hasAuthorship W4306940604A5074598500 @default.
- W4306940604 hasAuthorship W4306940604A5083369867 @default.
- W4306940604 hasAuthorship W4306940604A5084659737 @default.
- W4306940604 hasAuthorship W4306940604A5089134411 @default.
- W4306940604 hasBestOaLocation W43069406041 @default.
- W4306940604 hasConcept C105795698 @default.
- W4306940604 hasConcept C119857082 @default.
- W4306940604 hasConcept C126322002 @default.
- W4306940604 hasConcept C138885662 @default.
- W4306940604 hasConcept C151956035 @default.
- W4306940604 hasConcept C154945302 @default.
- W4306940604 hasConcept C160735492 @default.
- W4306940604 hasConcept C162324750 @default.
- W4306940604 hasConcept C169258074 @default.
- W4306940604 hasConcept C17744445 @default.
- W4306940604 hasConcept C199539241 @default.
- W4306940604 hasConcept C22679943 @default.
- W4306940604 hasConcept C2779134260 @default.
- W4306940604 hasConcept C2779207338 @default.
- W4306940604 hasConcept C3008058167 @default.
- W4306940604 hasConcept C33923547 @default.
- W4306940604 hasConcept C41008148 @default.
- W4306940604 hasConcept C41895202 @default.
- W4306940604 hasConcept C50522688 @default.
- W4306940604 hasConcept C520049643 @default.
- W4306940604 hasConcept C524204448 @default.
- W4306940604 hasConcept C58471807 @default.
- W4306940604 hasConcept C71924100 @default.
- W4306940604 hasConcept C94625758 @default.
- W4306940604 hasConcept C95623464 @default.
- W4306940604 hasConceptScore W4306940604C105795698 @default.
- W4306940604 hasConceptScore W4306940604C119857082 @default.
- W4306940604 hasConceptScore W4306940604C126322002 @default.
- W4306940604 hasConceptScore W4306940604C138885662 @default.
- W4306940604 hasConceptScore W4306940604C151956035 @default.
- W4306940604 hasConceptScore W4306940604C154945302 @default.
- W4306940604 hasConceptScore W4306940604C160735492 @default.
- W4306940604 hasConceptScore W4306940604C162324750 @default.
- W4306940604 hasConceptScore W4306940604C169258074 @default.
- W4306940604 hasConceptScore W4306940604C17744445 @default.