Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306947767> ?p ?o ?g. }
- W4306947767 endingPage "7960" @default.
- W4306947767 startingPage "7960" @default.
- W4306947767 abstract "Gait recognition has been applied in the prediction of the probability of elderly flat ground fall, functional evaluation during rehabilitation, and the training of patients with lower extremity motor dysfunction. Gait distinguishing between seemingly similar kinematic patterns associated with different pathological entities is a challenge for the clinician. How to realize automatic identification and judgment of abnormal gait is a significant challenge in clinical practice. The long-term goal of our study is to develop a gait recognition computer vision system using artificial intelligence (AI) and machine learning (ML) computing. This study aims to find an optimal ML algorithm using computer vision techniques and measure variables from lower limbs to classify gait patterns in healthy people. The purpose of this study is to determine the feasibility of computer vision and machine learning (ML) computing in discriminating different gait patterns associated with flat-ground falls.We used the Kinect® Motion system to capture the spatiotemporal gait data from seven healthy subjects in three walking trials, including normal gait, pelvic-obliquity-gait, and knee-hyperextension-gait walking. Four different classification methods including convolutional neural network (CNN), support vector machine (SVM), K-nearest neighbors (KNN), and long short-term memory (LSTM) neural networks were used to automatically classify three gait patterns. Overall, 750 sets of data were collected, and the dataset was divided into 80% for algorithm training and 20% for evaluation.The SVM and KNN had a higher accuracy than CNN and LSTM. The SVM (94.9 ± 3.36%) had the highest accuracy in the classification of gait patterns, followed by KNN (94.0 ± 4.22%). The accuracy of CNN was 87.6 ± 7.50% and that of LSTM 83.6 ± 5.35%.This study revealed that the proposed AI machine learning (ML) techniques can be used to design gait biometric systems and machine vision for gait pattern recognition. Potentially, this method can be used to remotely evaluate elderly patients and help clinicians make decisions regarding disposition, follow-up, and treatment." @default.
- W4306947767 created "2022-10-21" @default.
- W4306947767 creator A5012726142 @default.
- W4306947767 creator A5014306287 @default.
- W4306947767 creator A5015383784 @default.
- W4306947767 creator A5031219165 @default.
- W4306947767 creator A5033925150 @default.
- W4306947767 creator A5034576718 @default.
- W4306947767 creator A5055630689 @default.
- W4306947767 creator A5064124604 @default.
- W4306947767 creator A5064768536 @default.
- W4306947767 creator A5068970464 @default.
- W4306947767 creator A5088198922 @default.
- W4306947767 date "2022-10-19" @default.
- W4306947767 modified "2023-10-17" @default.
- W4306947767 title "Computer Vision and Machine Learning-Based Gait Pattern Recognition for Flat Fall Prediction" @default.
- W4306947767 cites W165828312 @default.
- W4306947767 cites W1995558350 @default.
- W4306947767 cites W2000454380 @default.
- W4306947767 cites W2000489358 @default.
- W4306947767 cites W2004160997 @default.
- W4306947767 cites W2007334697 @default.
- W4306947767 cites W2037569144 @default.
- W4306947767 cites W2074099390 @default.
- W4306947767 cites W2075779779 @default.
- W4306947767 cites W2079470039 @default.
- W4306947767 cites W2104713254 @default.
- W4306947767 cites W2121647405 @default.
- W4306947767 cites W2148317675 @default.
- W4306947767 cites W2162541683 @default.
- W4306947767 cites W2165698076 @default.
- W4306947767 cites W2166909610 @default.
- W4306947767 cites W2167012590 @default.
- W4306947767 cites W2168122705 @default.
- W4306947767 cites W2222399534 @default.
- W4306947767 cites W2253429366 @default.
- W4306947767 cites W2319798466 @default.
- W4306947767 cites W2403304796 @default.
- W4306947767 cites W2561981131 @default.
- W4306947767 cites W2562996226 @default.
- W4306947767 cites W2592878160 @default.
- W4306947767 cites W2618530766 @default.
- W4306947767 cites W2745157158 @default.
- W4306947767 cites W2783446128 @default.
- W4306947767 cites W2791533753 @default.
- W4306947767 cites W2791636814 @default.
- W4306947767 cites W2791851888 @default.
- W4306947767 cites W2793069434 @default.
- W4306947767 cites W2797061331 @default.
- W4306947767 cites W2802184063 @default.
- W4306947767 cites W2809254203 @default.
- W4306947767 cites W2905797181 @default.
- W4306947767 cites W2909657469 @default.
- W4306947767 cites W2909861393 @default.
- W4306947767 cites W2913671257 @default.
- W4306947767 cites W2928318647 @default.
- W4306947767 cites W2949856406 @default.
- W4306947767 cites W2949996175 @default.
- W4306947767 cites W2952040969 @default.
- W4306947767 cites W2962719052 @default.
- W4306947767 cites W2963356494 @default.
- W4306947767 cites W3008245623 @default.
- W4306947767 cites W3009283661 @default.
- W4306947767 cites W3010787982 @default.
- W4306947767 cites W3029924594 @default.
- W4306947767 cites W3037250257 @default.
- W4306947767 cites W3041395126 @default.
- W4306947767 cites W3042146990 @default.
- W4306947767 cites W3080342482 @default.
- W4306947767 cites W3083997743 @default.
- W4306947767 cites W3092746285 @default.
- W4306947767 cites W3119236024 @default.
- W4306947767 cites W3136689710 @default.
- W4306947767 cites W3140854437 @default.
- W4306947767 cites W3152695604 @default.
- W4306947767 cites W3156325985 @default.
- W4306947767 cites W3164831034 @default.
- W4306947767 cites W3174752903 @default.
- W4306947767 cites W3184888134 @default.
- W4306947767 cites W3188233954 @default.
- W4306947767 cites W3191137513 @default.
- W4306947767 cites W3193894556 @default.
- W4306947767 cites W3195711470 @default.
- W4306947767 cites W3198354357 @default.
- W4306947767 cites W3208949470 @default.
- W4306947767 cites W3217194416 @default.
- W4306947767 cites W4206286792 @default.
- W4306947767 cites W4206556668 @default.
- W4306947767 cites W4206955287 @default.
- W4306947767 cites W4207074659 @default.
- W4306947767 cites W4224241240 @default.
- W4306947767 cites W4226437492 @default.
- W4306947767 cites W4280564944 @default.
- W4306947767 cites W4281556630 @default.
- W4306947767 cites W4281662892 @default.
- W4306947767 cites W4283721208 @default.
- W4306947767 cites W4285011154 @default.
- W4306947767 cites W4287219797 @default.