Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306965360> ?p ?o ?g. }
- W4306965360 endingPage "13568" @default.
- W4306965360 startingPage "13568" @default.
- W4306965360 abstract "Online car-hailing has brought convenience to daily travel, whose accurate prediction benefits drivers and helps managers to grasp the characteristics of urban travel, so as to facilitate decisions. Spatiotemporal prediction in the transportation field has usually been based on a recurrent neural network (RNN), which has problems such as lengthy computation and backpropagation. This paper describes a model based on a Transformer, which has shown success in computer vision. The study area is divided into grids, and the structure of travel data is converted into video frames by time period, based on predicted spatiotemporal travel demand. The predictions of the model are closest to the real data in terms of spatial distribution and travel demand when the data are divided into 10 min intervals, and the travel demand in the first two hours is used to predict demand in the next hour. We experimentally compare the proposed model with the three most commonly used spatiotemporal prediction models, and the results show that our model has the best accuracy and training speed." @default.
- W4306965360 created "2022-10-21" @default.
- W4306965360 creator A5011213742 @default.
- W4306965360 creator A5033237869 @default.
- W4306965360 creator A5046108741 @default.
- W4306965360 creator A5074086963 @default.
- W4306965360 creator A5090606294 @default.
- W4306965360 date "2022-10-20" @default.
- W4306965360 modified "2023-10-14" @default.
- W4306965360 title "Spatiotemporal Prediction of Urban Online Car-Hailing Travel Demand Based on Transformer Network" @default.
- W4306965360 cites W2131739422 @default.
- W4306965360 cites W2560675361 @default.
- W4306965360 cites W2624190409 @default.
- W4306965360 cites W2745434016 @default.
- W4306965360 cites W2775717462 @default.
- W4306965360 cites W2793311937 @default.
- W4306965360 cites W2797061331 @default.
- W4306965360 cites W2801323363 @default.
- W4306965360 cites W2808871417 @default.
- W4306965360 cites W2897876396 @default.
- W4306965360 cites W2900503258 @default.
- W4306965360 cites W2903930254 @default.
- W4306965360 cites W2910883594 @default.
- W4306965360 cites W2914182690 @default.
- W4306965360 cites W2946782700 @default.
- W4306965360 cites W2955819484 @default.
- W4306965360 cites W2960749694 @default.
- W4306965360 cites W2964335123 @default.
- W4306965360 cites W2967781079 @default.
- W4306965360 cites W2968259729 @default.
- W4306965360 cites W2996936831 @default.
- W4306965360 cites W3009283661 @default.
- W4306965360 cites W3014008432 @default.
- W4306965360 cites W3034749137 @default.
- W4306965360 cites W3035338169 @default.
- W4306965360 cites W3039156183 @default.
- W4306965360 cites W3043108974 @default.
- W4306965360 cites W3109635183 @default.
- W4306965360 cites W3119265076 @default.
- W4306965360 cites W3124982122 @default.
- W4306965360 cites W3128724048 @default.
- W4306965360 cites W3129941521 @default.
- W4306965360 cites W3130029778 @default.
- W4306965360 cites W3145143043 @default.
- W4306965360 cites W3162384261 @default.
- W4306965360 cites W3200151752 @default.
- W4306965360 cites W3203619751 @default.
- W4306965360 cites W3211900639 @default.
- W4306965360 cites W3216759024 @default.
- W4306965360 cites W4226053814 @default.
- W4306965360 cites W4281711047 @default.
- W4306965360 cites W4283159083 @default.
- W4306965360 cites W4285244183 @default.
- W4306965360 cites W4288549814 @default.
- W4306965360 cites W4289861017 @default.
- W4306965360 doi "https://doi.org/10.3390/su142013568" @default.
- W4306965360 hasPublicationYear "2022" @default.
- W4306965360 type Work @default.
- W4306965360 citedByCount "2" @default.
- W4306965360 countsByYear W43069653602022 @default.
- W4306965360 countsByYear W43069653602023 @default.
- W4306965360 crossrefType "journal-article" @default.
- W4306965360 hasAuthorship W4306965360A5011213742 @default.
- W4306965360 hasAuthorship W4306965360A5033237869 @default.
- W4306965360 hasAuthorship W4306965360A5046108741 @default.
- W4306965360 hasAuthorship W4306965360A5074086963 @default.
- W4306965360 hasAuthorship W4306965360A5090606294 @default.
- W4306965360 hasBestOaLocation W43069653601 @default.
- W4306965360 hasConcept C11413529 @default.
- W4306965360 hasConcept C119599485 @default.
- W4306965360 hasConcept C119857082 @default.
- W4306965360 hasConcept C124101348 @default.
- W4306965360 hasConcept C127413603 @default.
- W4306965360 hasConcept C144072006 @default.
- W4306965360 hasConcept C147168706 @default.
- W4306965360 hasConcept C154945302 @default.
- W4306965360 hasConcept C155032097 @default.
- W4306965360 hasConcept C165801399 @default.
- W4306965360 hasConcept C171268870 @default.
- W4306965360 hasConcept C193809577 @default.
- W4306965360 hasConcept C199360897 @default.
- W4306965360 hasConcept C22212356 @default.
- W4306965360 hasConcept C2985733770 @default.
- W4306965360 hasConcept C41008148 @default.
- W4306965360 hasConcept C42475967 @default.
- W4306965360 hasConcept C44154836 @default.
- W4306965360 hasConcept C45374587 @default.
- W4306965360 hasConcept C45804977 @default.
- W4306965360 hasConcept C50644808 @default.
- W4306965360 hasConcept C66322947 @default.
- W4306965360 hasConceptScore W4306965360C11413529 @default.
- W4306965360 hasConceptScore W4306965360C119599485 @default.
- W4306965360 hasConceptScore W4306965360C119857082 @default.
- W4306965360 hasConceptScore W4306965360C124101348 @default.
- W4306965360 hasConceptScore W4306965360C127413603 @default.
- W4306965360 hasConceptScore W4306965360C144072006 @default.
- W4306965360 hasConceptScore W4306965360C147168706 @default.
- W4306965360 hasConceptScore W4306965360C154945302 @default.