Matches in SemOpenAlex for { <https://semopenalex.org/work/W4306974908> ?p ?o ?g. }
- W4306974908 endingPage "159638" @default.
- W4306974908 startingPage "159638" @default.
- W4306974908 abstract "Municipal wastewater treatment plants (WWTPs) can reflect the pollution status of per- and polyfluoroalkyl substances (PFASs) pollution. Here, matched influent, effluent, and sludge samples were collected from 58 municipal WWTPs in China, South Sudan, Tanzania, and Kenya. Target and suspect screening of PFASs was performed to explore their profiles in WWTPs and assess removal efficiency and environmental emissions. In total, 155 and 58 PFASs were identified in WWTPs in China and Africa, respectively; 146 and 126 PFASs were identified in wastewater and sludge, respectively. Novel compounds belonging to per- and polyfluoroalkyl ether carboxylic acids (PFECAs) and sulfonic acids (PFESAs), hydrogen-substituted polyfluorocarboxylic acids (H-PFCAs), and perfluoroalkyl sulfonamides (PFSMs) accounted for a considerable proportion of total PFASs (ΣPFASs) in Chinese WWTPs and were also widely detected in African samples. In China, estimated national emissions of ΣPFASs in WWTPs exceeded 16.8 t in 2015, with >60 % originating from emerging PFASs. Notably, current treatment processes are not effective at removing PFASs, with 35 of the 54 WWTPs showing emissions higher than mass loads. PFAS removal was also structure dependent. Based on machine learning models, we found that molecular descriptors (e.g., LogP and molecular weight) may affect adsorption behavior by increasing hydrophobicity, while other factors (e.g., polar surface area and molar refractivity) may play critical roles in PFAS removal and provide novel insights into PFAS pollution control. In conclusion, this study comprehensively screened PFASs in municipal WWTPs and determined the drivers affecting PFAS behavior in WWTPs based on machine learning models." @default.
- W4306974908 created "2022-10-22" @default.
- W4306974908 creator A5007571330 @default.
- W4306974908 creator A5011784138 @default.
- W4306974908 creator A5060679160 @default.
- W4306974908 creator A5066213995 @default.
- W4306974908 creator A5077653905 @default.
- W4306974908 creator A5087282127 @default.
- W4306974908 creator A5086086355 @default.
- W4306974908 date "2023-01-01" @default.
- W4306974908 modified "2023-10-16" @default.
- W4306974908 title "Comprehensive profiles of per- and polyfluoroalkyl substances in Chinese and African municipal wastewater treatment plants: New implications for removal efficiency" @default.
- W4306974908 cites W1966202933 @default.
- W4306974908 cites W1976770880 @default.
- W4306974908 cites W1979435857 @default.
- W4306974908 cites W2011384751 @default.
- W4306974908 cites W2029916104 @default.
- W4306974908 cites W2031998321 @default.
- W4306974908 cites W2039368905 @default.
- W4306974908 cites W2071712669 @default.
- W4306974908 cites W2079387648 @default.
- W4306974908 cites W2080213917 @default.
- W4306974908 cites W2089687771 @default.
- W4306974908 cites W2103663469 @default.
- W4306974908 cites W2295716976 @default.
- W4306974908 cites W2322580831 @default.
- W4306974908 cites W2437701936 @default.
- W4306974908 cites W2527322818 @default.
- W4306974908 cites W2533174415 @default.
- W4306974908 cites W2574508558 @default.
- W4306974908 cites W2589816650 @default.
- W4306974908 cites W2598111220 @default.
- W4306974908 cites W261228946 @default.
- W4306974908 cites W2734664239 @default.
- W4306974908 cites W2744815276 @default.
- W4306974908 cites W2755869645 @default.
- W4306974908 cites W2763917533 @default.
- W4306974908 cites W2801936321 @default.
- W4306974908 cites W2807088657 @default.
- W4306974908 cites W2809368137 @default.
- W4306974908 cites W2884946181 @default.
- W4306974908 cites W2885583224 @default.
- W4306974908 cites W2894055860 @default.
- W4306974908 cites W2894219029 @default.
- W4306974908 cites W2901377336 @default.
- W4306974908 cites W2913872591 @default.
- W4306974908 cites W2936070933 @default.
- W4306974908 cites W2937401959 @default.
- W4306974908 cites W3009920796 @default.
- W4306974908 cites W3016491676 @default.
- W4306974908 cites W3033197225 @default.
- W4306974908 cites W3033288639 @default.
- W4306974908 cites W3036760931 @default.
- W4306974908 cites W3088869573 @default.
- W4306974908 cites W3091720565 @default.
- W4306974908 cites W3091745167 @default.
- W4306974908 cites W3110911372 @default.
- W4306974908 cites W3120286650 @default.
- W4306974908 cites W3121899439 @default.
- W4306974908 cites W3152600622 @default.
- W4306974908 cites W3157126694 @default.
- W4306974908 cites W3205520669 @default.
- W4306974908 cites W4200018411 @default.
- W4306974908 cites W4206949823 @default.
- W4306974908 cites W4210795660 @default.
- W4306974908 cites W4280498121 @default.
- W4306974908 cites W4281918809 @default.
- W4306974908 cites W4283756178 @default.
- W4306974908 cites W4289443648 @default.
- W4306974908 cites W4289525473 @default.
- W4306974908 doi "https://doi.org/10.1016/j.scitotenv.2022.159638" @default.
- W4306974908 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36280053" @default.
- W4306974908 hasPublicationYear "2023" @default.
- W4306974908 type Work @default.
- W4306974908 citedByCount "5" @default.
- W4306974908 countsByYear W43069749082023 @default.
- W4306974908 crossrefType "journal-article" @default.
- W4306974908 hasAuthorship W4306974908A5007571330 @default.
- W4306974908 hasAuthorship W4306974908A5011784138 @default.
- W4306974908 hasAuthorship W4306974908A5060679160 @default.
- W4306974908 hasAuthorship W4306974908A5066213995 @default.
- W4306974908 hasAuthorship W4306974908A5077653905 @default.
- W4306974908 hasAuthorship W4306974908A5086086355 @default.
- W4306974908 hasAuthorship W4306974908A5087282127 @default.
- W4306974908 hasConcept C107872376 @default.
- W4306974908 hasConcept C147455438 @default.
- W4306974908 hasConcept C178790620 @default.
- W4306974908 hasConcept C185592680 @default.
- W4306974908 hasConcept C18903297 @default.
- W4306974908 hasConcept C2778894819 @default.
- W4306974908 hasConcept C2781314072 @default.
- W4306974908 hasConcept C39432304 @default.
- W4306974908 hasConcept C521259446 @default.
- W4306974908 hasConcept C537181965 @default.
- W4306974908 hasConcept C57442070 @default.
- W4306974908 hasConcept C86803240 @default.
- W4306974908 hasConcept C87717796 @default.
- W4306974908 hasConcept C94061648 @default.