Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307009747> ?p ?o ?g. }
- W4307009747 endingPage "104233" @default.
- W4307009747 startingPage "104233" @default.
- W4307009747 abstract "Glaucoma is the leading cause of irreversible blindness, and the early detection and timely treatment are essential for glaucoma management. However, due to the interindividual variability in the characteristics of glaucoma onset, a single feature is not yet sufficient for monitoring glaucoma progression in isolation. There is an urgent need to develop more comprehensive diagnostic methods with higher accuracy. In this study, we proposed a multi- feature deep learning (MFDL) system based on intraocular pressure (IOP), color fundus photograph (CFP) and visual field (VF) to classify the glaucoma into four severity levels. We designed a three-phase framework for glaucoma severity diagnosis from coarse to fine, which contains screening, detection and classification. We trained it on 6,131 samples from 3,324 patients and tested it on independent 240 samples from 185 patients. Our results show that MFDL achieved a higher accuracy of 0.842 (95 % CI, 0.795-0.888) than the direct four classification deep learning (DFC-DL, accuracy of 0.513 [0.449-0.576]), CFP-based single-feature deep learning (CFP-DL, accuracy of 0.483 [0.420-0.547]) and VF-based single-feature deep learning (VF-DL, accuracy of 0.725 [0.668-0.782]). Its performance was statistically significantly superior to that of 8 juniors. It also outperformed 3 seniors and 1 expert, and was comparable with 2 glaucoma experts (0.842 vs 0.854, p = 0.663; 0.842 vs 0.858, p = 0.580). With the assistance of MFDL, junior ophthalmologists achieved statistically significantly higher accuracy performance, with the increased accuracy ranged from 7.50 % to 17.9 %, and that of seniors and experts were 6.30 % to 7.50 % and 5.40 % to 7.50 %. The mean diagnosis time per patient of MFDL was 5.96 s. The proposed model can potentially assist ophthalmologists in efficient and accurate glaucoma diagnosis that could aid the clinical management of glaucoma." @default.
- W4307009747 created "2022-10-22" @default.
- W4307009747 creator A5006068798 @default.
- W4307009747 creator A5016183535 @default.
- W4307009747 creator A5040588043 @default.
- W4307009747 creator A5041170278 @default.
- W4307009747 creator A5045076245 @default.
- W4307009747 creator A5046848439 @default.
- W4307009747 creator A5057580737 @default.
- W4307009747 creator A5063974104 @default.
- W4307009747 creator A5070682453 @default.
- W4307009747 creator A5074117281 @default.
- W4307009747 creator A5090289341 @default.
- W4307009747 date "2022-12-01" @default.
- W4307009747 modified "2023-09-26" @default.
- W4307009747 title "A multi-feature deep learning system to enhance glaucoma severity diagnosis with high accuracy and fast speed" @default.
- W4307009747 cites W1506878023 @default.
- W4307009747 cites W1539811621 @default.
- W4307009747 cites W1912982817 @default.
- W4307009747 cites W1967005434 @default.
- W4307009747 cites W1976468890 @default.
- W4307009747 cites W1978132741 @default.
- W4307009747 cites W1980328325 @default.
- W4307009747 cites W2007602673 @default.
- W4307009747 cites W2013978929 @default.
- W4307009747 cites W2019610144 @default.
- W4307009747 cites W2034742711 @default.
- W4307009747 cites W2064980575 @default.
- W4307009747 cites W2072852299 @default.
- W4307009747 cites W2079853375 @default.
- W4307009747 cites W2140594570 @default.
- W4307009747 cites W2158698691 @default.
- W4307009747 cites W2160605010 @default.
- W4307009747 cites W2160968104 @default.
- W4307009747 cites W2169961704 @default.
- W4307009747 cites W2170177550 @default.
- W4307009747 cites W2194775991 @default.
- W4307009747 cites W2213028454 @default.
- W4307009747 cites W2213541252 @default.
- W4307009747 cites W2220700528 @default.
- W4307009747 cites W2249691923 @default.
- W4307009747 cites W2521776509 @default.
- W4307009747 cites W2616952103 @default.
- W4307009747 cites W2731980211 @default.
- W4307009747 cites W2767290858 @default.
- W4307009747 cites W2791366370 @default.
- W4307009747 cites W2792026451 @default.
- W4307009747 cites W2841732318 @default.
- W4307009747 cites W2903138910 @default.
- W4307009747 cites W2903396681 @default.
- W4307009747 cites W2912650418 @default.
- W4307009747 cites W2977922008 @default.
- W4307009747 cites W3083027974 @default.
- W4307009747 cites W3108473457 @default.
- W4307009747 cites W3112046093 @default.
- W4307009747 cites W3154792692 @default.
- W4307009747 cites W3187279663 @default.
- W4307009747 cites W3198734157 @default.
- W4307009747 cites W4206485229 @default.
- W4307009747 cites W4224951237 @default.
- W4307009747 cites W4232577649 @default.
- W4307009747 cites W4251929146 @default.
- W4307009747 cites W4280611309 @default.
- W4307009747 cites W846171397 @default.
- W4307009747 doi "https://doi.org/10.1016/j.jbi.2022.104233" @default.
- W4307009747 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36280089" @default.
- W4307009747 hasPublicationYear "2022" @default.
- W4307009747 type Work @default.
- W4307009747 citedByCount "1" @default.
- W4307009747 countsByYear W43070097472023 @default.
- W4307009747 crossrefType "journal-article" @default.
- W4307009747 hasAuthorship W4307009747A5006068798 @default.
- W4307009747 hasAuthorship W4307009747A5016183535 @default.
- W4307009747 hasAuthorship W4307009747A5040588043 @default.
- W4307009747 hasAuthorship W4307009747A5041170278 @default.
- W4307009747 hasAuthorship W4307009747A5045076245 @default.
- W4307009747 hasAuthorship W4307009747A5046848439 @default.
- W4307009747 hasAuthorship W4307009747A5057580737 @default.
- W4307009747 hasAuthorship W4307009747A5063974104 @default.
- W4307009747 hasAuthorship W4307009747A5070682453 @default.
- W4307009747 hasAuthorship W4307009747A5074117281 @default.
- W4307009747 hasAuthorship W4307009747A5090289341 @default.
- W4307009747 hasBestOaLocation W43070097471 @default.
- W4307009747 hasConcept C108583219 @default.
- W4307009747 hasConcept C118487528 @default.
- W4307009747 hasConcept C119767625 @default.
- W4307009747 hasConcept C119857082 @default.
- W4307009747 hasConcept C138885662 @default.
- W4307009747 hasConcept C154945302 @default.
- W4307009747 hasConcept C2776391266 @default.
- W4307009747 hasConcept C2776401178 @default.
- W4307009747 hasConcept C2778527774 @default.
- W4307009747 hasConcept C2780929884 @default.
- W4307009747 hasConcept C2781092963 @default.
- W4307009747 hasConcept C41008148 @default.
- W4307009747 hasConcept C41895202 @default.
- W4307009747 hasConcept C71924100 @default.
- W4307009747 hasConceptScore W4307009747C108583219 @default.