Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307019968> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4307019968 endingPage "246" @default.
- W4307019968 startingPage "239" @default.
- W4307019968 abstract "The exp(− φ ( ξ ))-expansion method is discussed in this chapter for solving time-fractional differential equations. The nonlinear time-fractional Korteweg de Vries and modified Korteweg de Vries equations have been solved using this method. The fractional derivatives are described in the modified Riemann–Liouville sense. The fractional complex transform is used to convert fractional partial differential equations into ordinary differential equations. Obtained exact solutions of this method consist of hyperbolic, trigonometric, and rational functions solutions." @default.
- W4307019968 created "2022-10-22" @default.
- W4307019968 date "2022-10-20" @default.
- W4307019968 modified "2023-09-26" @default.
- W4307019968 title "Exp(− <i>φ</i> ( <i>ξ</i> ))‐Expansion Method" @default.
- W4307019968 cites W1633315028 @default.
- W4307019968 cites W1892470506 @default.
- W4307019968 cites W1999793772 @default.
- W4307019968 cites W2041950632 @default.
- W4307019968 cites W2062174227 @default.
- W4307019968 cites W2146423481 @default.
- W4307019968 cites W2182608108 @default.
- W4307019968 cites W2183087555 @default.
- W4307019968 cites W2298512345 @default.
- W4307019968 cites W2563692512 @default.
- W4307019968 cites W332317181 @default.
- W4307019968 cites W941945513 @default.
- W4307019968 doi "https://doi.org/10.1002/9781119697060.ch25" @default.
- W4307019968 hasPublicationYear "2022" @default.
- W4307019968 type Work @default.
- W4307019968 citedByCount "0" @default.
- W4307019968 crossrefType "other" @default.
- W4307019968 hasConcept C121332964 @default.
- W4307019968 hasConcept C134306372 @default.
- W4307019968 hasConcept C146630112 @default.
- W4307019968 hasConcept C154249771 @default.
- W4307019968 hasConcept C158622935 @default.
- W4307019968 hasConcept C178009071 @default.
- W4307019968 hasConcept C2524010 @default.
- W4307019968 hasConcept C28826006 @default.
- W4307019968 hasConcept C29001434 @default.
- W4307019968 hasConcept C33923547 @default.
- W4307019968 hasConcept C51544822 @default.
- W4307019968 hasConcept C62520636 @default.
- W4307019968 hasConcept C78045399 @default.
- W4307019968 hasConcept C93779851 @default.
- W4307019968 hasConceptScore W4307019968C121332964 @default.
- W4307019968 hasConceptScore W4307019968C134306372 @default.
- W4307019968 hasConceptScore W4307019968C146630112 @default.
- W4307019968 hasConceptScore W4307019968C154249771 @default.
- W4307019968 hasConceptScore W4307019968C158622935 @default.
- W4307019968 hasConceptScore W4307019968C178009071 @default.
- W4307019968 hasConceptScore W4307019968C2524010 @default.
- W4307019968 hasConceptScore W4307019968C28826006 @default.
- W4307019968 hasConceptScore W4307019968C29001434 @default.
- W4307019968 hasConceptScore W4307019968C33923547 @default.
- W4307019968 hasConceptScore W4307019968C51544822 @default.
- W4307019968 hasConceptScore W4307019968C62520636 @default.
- W4307019968 hasConceptScore W4307019968C78045399 @default.
- W4307019968 hasConceptScore W4307019968C93779851 @default.
- W4307019968 hasLocation W43070199681 @default.
- W4307019968 hasOpenAccess W4307019968 @default.
- W4307019968 hasPrimaryLocation W43070199681 @default.
- W4307019968 hasRelatedWork W1971565870 @default.
- W4307019968 hasRelatedWork W2054413982 @default.
- W4307019968 hasRelatedWork W2110736000 @default.
- W4307019968 hasRelatedWork W2143626515 @default.
- W4307019968 hasRelatedWork W2296450273 @default.
- W4307019968 hasRelatedWork W3033543656 @default.
- W4307019968 hasRelatedWork W3096624386 @default.
- W4307019968 hasRelatedWork W4223597674 @default.
- W4307019968 hasRelatedWork W4318474686 @default.
- W4307019968 hasRelatedWork W3019615564 @default.
- W4307019968 isParatext "false" @default.
- W4307019968 isRetracted "false" @default.
- W4307019968 workType "other" @default.