Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307031970> ?p ?o ?g. }
- W4307031970 endingPage "4332" @default.
- W4307031970 startingPage "4320" @default.
- W4307031970 abstract "The uptake transporter OATP1B1 (SLC01B1) is largely localized to the sinusoidal membrane of hepatocytes and is a known victim of unwanted drug-drug interactions. Computational models are useful for identifying potential substrates and/or inhibitors of clinically relevant transporters. Our goal was to generate OATP1B1 in vitro inhibition data for [3H] estrone-3-sulfate (E3S) transport in CHO cells and use it to build machine learning models to facilitate a comparison of seven different classification models (Deep learning, Adaboosted decision trees, Bernoulli naïve bayes, k-nearest neighbors (knn), random forest, support vector classifier (SVC), logistic regression (lreg), and XGBoost (xgb)] using ECFP6 fingerprints to perform 5-fold, nested cross validation. In addition, we compared models using 3D pharmacophores, simple chemical descriptors alone or plus ECFP6, as well as ECFP4 and ECFP8 fingerprints. Several machine learning algorithms (SVC, lreg, xgb, and knn) had excellent nested cross validation statistics, particularly for accuracy, AUC, and specificity. An external test set containing 207 unique compounds not in the training set demonstrated that at every threshold SVC outperformed the other algorithms based on a rank normalized score. A prospective validation test set was chosen using prediction scores from the SVC models with ECFP fingerprints and were tested in vitro with 15 of 19 compounds (84% accuracy) predicted as active (≥20% inhibition) showed inhibition. Of these compounds, six (abamectin, asiaticoside, berbamine, doramectin, mobocertinib, and umbralisib) appear to be novel inhibitors of OATP1B1 not previously reported. These validated machine learning models can now be used to make predictions for drug-drug interactions for human OATP1B1 alongside other machine learning models for important drug transporters in our MegaTrans software." @default.
- W4307031970 created "2022-10-23" @default.
- W4307031970 creator A5005108258 @default.
- W4307031970 creator A5008199212 @default.
- W4307031970 creator A5017318940 @default.
- W4307031970 creator A5060511851 @default.
- W4307031970 creator A5064159259 @default.
- W4307031970 creator A5073973321 @default.
- W4307031970 creator A5086444679 @default.
- W4307031970 date "2022-10-21" @default.
- W4307031970 modified "2023-10-16" @default.
- W4307031970 title "Machine Learning Models Identify New Inhibitors for Human OATP1B1" @default.
- W4307031970 cites W1505417844 @default.
- W4307031970 cites W1558276030 @default.
- W4307031970 cites W1577861479 @default.
- W4307031970 cites W1711639876 @default.
- W4307031970 cites W1975503974 @default.
- W4307031970 cites W1977839873 @default.
- W4307031970 cites W1984807385 @default.
- W4307031970 cites W1987118114 @default.
- W4307031970 cites W1991985798 @default.
- W4307031970 cites W1995238258 @default.
- W4307031970 cites W2003509188 @default.
- W4307031970 cites W2005263430 @default.
- W4307031970 cites W2005554839 @default.
- W4307031970 cites W2010241890 @default.
- W4307031970 cites W2028694954 @default.
- W4307031970 cites W2030848847 @default.
- W4307031970 cites W2043214395 @default.
- W4307031970 cites W2044459219 @default.
- W4307031970 cites W2045750428 @default.
- W4307031970 cites W2049911450 @default.
- W4307031970 cites W2053076602 @default.
- W4307031970 cites W2065028541 @default.
- W4307031970 cites W2069444364 @default.
- W4307031970 cites W2079197876 @default.
- W4307031970 cites W2080143292 @default.
- W4307031970 cites W2084769078 @default.
- W4307031970 cites W2099167431 @default.
- W4307031970 cites W2099949138 @default.
- W4307031970 cites W2108401653 @default.
- W4307031970 cites W2109333833 @default.
- W4307031970 cites W2112649925 @default.
- W4307031970 cites W2131976213 @default.
- W4307031970 cites W2134772502 @default.
- W4307031970 cites W2138603709 @default.
- W4307031970 cites W2138972881 @default.
- W4307031970 cites W2139176209 @default.
- W4307031970 cites W2143645910 @default.
- W4307031970 cites W2146324132 @default.
- W4307031970 cites W2148244985 @default.
- W4307031970 cites W2156055785 @default.
- W4307031970 cites W2159651548 @default.
- W4307031970 cites W2161097683 @default.
- W4307031970 cites W2162830271 @default.
- W4307031970 cites W2167773607 @default.
- W4307031970 cites W2176736116 @default.
- W4307031970 cites W2191975304 @default.
- W4307031970 cites W2244785476 @default.
- W4307031970 cites W2278800211 @default.
- W4307031970 cites W2296400016 @default.
- W4307031970 cites W2314250138 @default.
- W4307031970 cites W2398288423 @default.
- W4307031970 cites W2401677822 @default.
- W4307031970 cites W2436108096 @default.
- W4307031970 cites W2460587874 @default.
- W4307031970 cites W2465799723 @default.
- W4307031970 cites W2482525045 @default.
- W4307031970 cites W2508243113 @default.
- W4307031970 cites W2519019522 @default.
- W4307031970 cites W2559145072 @default.
- W4307031970 cites W2766761250 @default.
- W4307031970 cites W2801291332 @default.
- W4307031970 cites W2806678503 @default.
- W4307031970 cites W2836870610 @default.
- W4307031970 cites W2887039457 @default.
- W4307031970 cites W2887655204 @default.
- W4307031970 cites W2902128418 @default.
- W4307031970 cites W2921232647 @default.
- W4307031970 cites W2938446497 @default.
- W4307031970 cites W2940600539 @default.
- W4307031970 cites W2957454170 @default.
- W4307031970 cites W2998184785 @default.
- W4307031970 cites W3028758218 @default.
- W4307031970 cites W3083880952 @default.
- W4307031970 cites W3108827539 @default.
- W4307031970 cites W3111216799 @default.
- W4307031970 cites W3182522906 @default.
- W4307031970 cites W3207703843 @default.
- W4307031970 cites W409057333 @default.
- W4307031970 cites W4220791160 @default.
- W4307031970 cites W4221125902 @default.
- W4307031970 cites W823906778 @default.
- W4307031970 doi "https://doi.org/10.1021/acs.molpharmaceut.2c00662" @default.
- W4307031970 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36269563" @default.
- W4307031970 hasPublicationYear "2022" @default.
- W4307031970 type Work @default.
- W4307031970 citedByCount "5" @default.