Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307040098> ?p ?o ?g. }
- W4307040098 endingPage "111608" @default.
- W4307040098 startingPage "111608" @default.
- W4307040098 abstract "The properties of High Entropy Alloys (HEAs) strongly depend on the composition and content of elements. However, it was difficult to obtain the optimized element composition through the traditional trial and error method. The non-equiatomic HEAs have a large range for composition exploration by changing the content of elements, but the current research methods are difficult to analyze comprehensively. In this work, the prediction model with high accuracy is established by mixture design, the first principles calculation and machine learning. The model is used to predict the elastic properties and Poisson's ratio of non-equiatomic Mo–Nb–Ta–Ti–V HEAs, and the prediction results agree well with experimental data. The optimal element composition range of elastic properties and Poisson's ratio could be obtained. The influence of elements on the elastic properties and Poisson's ratio is analyzed through the calculation of features' importance. The results show that the content of Ti has the greatest contribution to the elastic properties and Poisson's ratio of the alloy. This model can not only obtain a large amount of data quickly and accurately but also help us to establish the relationship between element content and mechanical properties of non-equiatomic Mo–Nb–Ta–Ti–V RHEAs and provide theoretical guidance for experiments." @default.
- W4307040098 created "2022-10-23" @default.
- W4307040098 creator A5003492217 @default.
- W4307040098 creator A5004930147 @default.
- W4307040098 creator A5006825985 @default.
- W4307040098 creator A5022256556 @default.
- W4307040098 creator A5033739797 @default.
- W4307040098 creator A5056115044 @default.
- W4307040098 date "2023-01-01" @default.
- W4307040098 modified "2023-10-14" @default.
- W4307040098 title "Machine learning accelerated design of non-equiatomic refractory high entropy alloys based on first principles calculation" @default.
- W4307040098 cites W146320490 @default.
- W4307040098 cites W1574307775 @default.
- W4307040098 cites W1755338472 @default.
- W4307040098 cites W2003975937 @default.
- W4307040098 cites W2015743229 @default.
- W4307040098 cites W2016614245 @default.
- W4307040098 cites W2017234341 @default.
- W4307040098 cites W2017747103 @default.
- W4307040098 cites W2018579301 @default.
- W4307040098 cites W2018833567 @default.
- W4307040098 cites W2029165650 @default.
- W4307040098 cites W2046200824 @default.
- W4307040098 cites W2055268089 @default.
- W4307040098 cites W2078492700 @default.
- W4307040098 cites W2084846541 @default.
- W4307040098 cites W2296686360 @default.
- W4307040098 cites W2333750163 @default.
- W4307040098 cites W2465176794 @default.
- W4307040098 cites W2534691303 @default.
- W4307040098 cites W2550215930 @default.
- W4307040098 cites W2706026564 @default.
- W4307040098 cites W2720596759 @default.
- W4307040098 cites W2743904514 @default.
- W4307040098 cites W2802652936 @default.
- W4307040098 cites W2804887222 @default.
- W4307040098 cites W2883326306 @default.
- W4307040098 cites W2886420565 @default.
- W4307040098 cites W2888982927 @default.
- W4307040098 cites W2902935617 @default.
- W4307040098 cites W2904264076 @default.
- W4307040098 cites W2921873493 @default.
- W4307040098 cites W2951869797 @default.
- W4307040098 cites W2962466852 @default.
- W4307040098 cites W2963249940 @default.
- W4307040098 cites W2968852465 @default.
- W4307040098 cites W2976387101 @default.
- W4307040098 cites W2988534655 @default.
- W4307040098 cites W2992115806 @default.
- W4307040098 cites W3004356611 @default.
- W4307040098 cites W3027506783 @default.
- W4307040098 cites W3027997880 @default.
- W4307040098 cites W3036260226 @default.
- W4307040098 cites W3047844393 @default.
- W4307040098 cites W3092444746 @default.
- W4307040098 cites W3093686866 @default.
- W4307040098 cites W3128623355 @default.
- W4307040098 cites W3131102893 @default.
- W4307040098 cites W3131467656 @default.
- W4307040098 cites W3196761607 @default.
- W4307040098 cites W3199509264 @default.
- W4307040098 cites W3202265629 @default.
- W4307040098 cites W3202591888 @default.
- W4307040098 cites W3205631417 @default.
- W4307040098 cites W3216255629 @default.
- W4307040098 cites W4210677924 @default.
- W4307040098 cites W4224129425 @default.
- W4307040098 doi "https://doi.org/10.1016/j.vacuum.2022.111608" @default.
- W4307040098 hasPublicationYear "2023" @default.
- W4307040098 type Work @default.
- W4307040098 citedByCount "13" @default.
- W4307040098 countsByYear W43070400982022 @default.
- W4307040098 countsByYear W43070400982023 @default.
- W4307040098 crossrefType "journal-article" @default.
- W4307040098 hasAuthorship W4307040098A5003492217 @default.
- W4307040098 hasAuthorship W4307040098A5004930147 @default.
- W4307040098 hasAuthorship W4307040098A5006825985 @default.
- W4307040098 hasAuthorship W4307040098A5022256556 @default.
- W4307040098 hasAuthorship W4307040098A5033739797 @default.
- W4307040098 hasAuthorship W4307040098A5056115044 @default.
- W4307040098 hasConcept C100906024 @default.
- W4307040098 hasConcept C105795698 @default.
- W4307040098 hasConcept C121332964 @default.
- W4307040098 hasConcept C121864883 @default.
- W4307040098 hasConcept C149505630 @default.
- W4307040098 hasConcept C159985019 @default.
- W4307040098 hasConcept C191897082 @default.
- W4307040098 hasConcept C192562407 @default.
- W4307040098 hasConcept C204323151 @default.
- W4307040098 hasConcept C2780026712 @default.
- W4307040098 hasConcept C2780299837 @default.
- W4307040098 hasConcept C33923547 @default.
- W4307040098 hasConcept C97355855 @default.
- W4307040098 hasConceptScore W4307040098C100906024 @default.
- W4307040098 hasConceptScore W4307040098C105795698 @default.
- W4307040098 hasConceptScore W4307040098C121332964 @default.
- W4307040098 hasConceptScore W4307040098C121864883 @default.
- W4307040098 hasConceptScore W4307040098C149505630 @default.