Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307046899> ?p ?o ?g. }
- W4307046899 abstract "S ummary The cerebellum has a distinctive architecture in which inputs undergo a massive size expansion in dimensionality in early layers. Marr and Albus’s classic codon theory and more recent extensions 1–4 argue that this architecture facilitates learning via pattern separation. The essence of this idea is that sparsely active clusters —‘codons’— of inputs are more easily separable in a higher dimensional representation. However, recent physiological data indicate that cerebellar activity is not sparse in the way anticipated by codon theory. Moreover, there is a conceptual gap between static pattern separation and the critical role of the cerebellum in dynamic tasks such as motor learning. We use mathematical analysis and simulations of cerebellar learning to identify specific difficulties inherent to online learning of dynamic tasks. We find that size expansions directly mitigate these difficulties, and that this benefit is maximised when granule cell activity is dense." @default.
- W4307046899 created "2022-10-23" @default.
- W4307046899 creator A5004665245 @default.
- W4307046899 creator A5041119261 @default.
- W4307046899 creator A5044317847 @default.
- W4307046899 date "2022-10-21" @default.
- W4307046899 modified "2023-10-02" @default.
- W4307046899 title "How Cerebellar Architecture and Dense Activation Patterns Facilitate Online Learning in Dynamic Tasks" @default.
- W4307046899 cites W1535810436 @default.
- W4307046899 cites W1593816474 @default.
- W4307046899 cites W1635674943 @default.
- W4307046899 cites W1722081514 @default.
- W4307046899 cites W1967630725 @default.
- W4307046899 cites W1968021864 @default.
- W4307046899 cites W1972466164 @default.
- W4307046899 cites W1979096535 @default.
- W4307046899 cites W1980695639 @default.
- W4307046899 cites W1981297107 @default.
- W4307046899 cites W1988596442 @default.
- W4307046899 cites W1993533483 @default.
- W4307046899 cites W1994207775 @default.
- W4307046899 cites W1996990492 @default.
- W4307046899 cites W2000880356 @default.
- W4307046899 cites W2022113456 @default.
- W4307046899 cites W2024099018 @default.
- W4307046899 cites W2035671925 @default.
- W4307046899 cites W2037929996 @default.
- W4307046899 cites W2043968544 @default.
- W4307046899 cites W2045393115 @default.
- W4307046899 cites W2049171959 @default.
- W4307046899 cites W2049727349 @default.
- W4307046899 cites W2053694398 @default.
- W4307046899 cites W2065575763 @default.
- W4307046899 cites W2067915969 @default.
- W4307046899 cites W2072365940 @default.
- W4307046899 cites W2072674802 @default.
- W4307046899 cites W2081422689 @default.
- W4307046899 cites W2081817157 @default.
- W4307046899 cites W2082254085 @default.
- W4307046899 cites W2084621873 @default.
- W4307046899 cites W2097105997 @default.
- W4307046899 cites W2098424142 @default.
- W4307046899 cites W2103019454 @default.
- W4307046899 cites W2103617625 @default.
- W4307046899 cites W2105209710 @default.
- W4307046899 cites W2113473620 @default.
- W4307046899 cites W2138398296 @default.
- W4307046899 cites W2143590623 @default.
- W4307046899 cites W2152388841 @default.
- W4307046899 cites W2155051950 @default.
- W4307046899 cites W2155986795 @default.
- W4307046899 cites W2159586273 @default.
- W4307046899 cites W2165095254 @default.
- W4307046899 cites W2220734730 @default.
- W4307046899 cites W2250722538 @default.
- W4307046899 cites W2289040902 @default.
- W4307046899 cites W2301250341 @default.
- W4307046899 cites W2318858940 @default.
- W4307046899 cites W2553409614 @default.
- W4307046899 cites W2575681866 @default.
- W4307046899 cites W2588048611 @default.
- W4307046899 cites W2595087345 @default.
- W4307046899 cites W2597662796 @default.
- W4307046899 cites W2605712282 @default.
- W4307046899 cites W2622640393 @default.
- W4307046899 cites W2727969738 @default.
- W4307046899 cites W2772851820 @default.
- W4307046899 cites W2797892668 @default.
- W4307046899 cites W2869264951 @default.
- W4307046899 cites W2900806427 @default.
- W4307046899 cites W2907941832 @default.
- W4307046899 cites W2918076437 @default.
- W4307046899 cites W2951200949 @default.
- W4307046899 cites W2969898722 @default.
- W4307046899 cites W2995888003 @default.
- W4307046899 cites W3005166179 @default.
- W4307046899 cites W3037774927 @default.
- W4307046899 cites W3040443323 @default.
- W4307046899 cites W3082431151 @default.
- W4307046899 cites W3126028740 @default.
- W4307046899 cites W3200709260 @default.
- W4307046899 cites W3212945014 @default.
- W4307046899 cites W3215940786 @default.
- W4307046899 cites W4206337121 @default.
- W4307046899 cites W4224298563 @default.
- W4307046899 cites W4234591377 @default.
- W4307046899 cites W4247673052 @default.
- W4307046899 cites W4281391086 @default.
- W4307046899 cites W4308952198 @default.
- W4307046899 doi "https://doi.org/10.1101/2022.10.20.512268" @default.
- W4307046899 hasPublicationYear "2022" @default.
- W4307046899 type Work @default.
- W4307046899 citedByCount "0" @default.
- W4307046899 crossrefType "posted-content" @default.
- W4307046899 hasAuthorship W4307046899A5004665245 @default.
- W4307046899 hasAuthorship W4307046899A5041119261 @default.
- W4307046899 hasAuthorship W4307046899A5044317847 @default.
- W4307046899 hasBestOaLocation W43070468991 @default.
- W4307046899 hasConcept C107038049 @default.
- W4307046899 hasConcept C107690735 @default.