Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307046904> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4307046904 endingPage "012042" @default.
- W4307046904 startingPage "012042" @default.
- W4307046904 abstract "Abstract Deep learning (DL) addresses the brilliant period of Artificial intelligence (AI) and is slowly developing into the main technique in numerous fields. Currently it assumes a significant part in the early location and order of plant diseases. Plant diseases have long been one of the main threats to food security, significantly reducing crop yields and quality. Therefore accurate disease diagnosis is the main goal. The utilization of machine learning (ML) innovation in this space is accepted to have prompted a huge expansion in usefulness in the hydroponics area, particularly in the new rise of ML which appears to expand the degree of precision. As the latest modern technology in image processing and successful application in various fields, deep learning has great potential and broad prospects in agriculture. This paper surveys 40 studies using deep learning methods applied to agriculture and food production. In this study, deep learning is compared to other popular image processing techniques. The findings show that deep learning provides better performance. Future directions may additionally consist of the usage of drones and agricultural robots to automate photo seize and then zooming in on plant sickness image datasets, using newly posted fashions that describe more efficient architectures with fewer parameters, as well as the use of new techniques for photograph enlargement inclusive of generative adversarial networks (GANs)." @default.
- W4307046904 created "2022-10-23" @default.
- W4307046904 creator A5001119680 @default.
- W4307046904 creator A5079649654 @default.
- W4307046904 creator A5028490055 @default.
- W4307046904 date "2022-10-01" @default.
- W4307046904 modified "2023-09-30" @default.
- W4307046904 title "Systematic Review of the Early Detection and Classification of Plant Diseases Using Deep Learning" @default.
- W4307046904 cites W2790979755 @default.
- W4307046904 cites W2799848215 @default.
- W4307046904 cites W2887902433 @default.
- W4307046904 cites W2900728312 @default.
- W4307046904 cites W2902625477 @default.
- W4307046904 cites W2911433502 @default.
- W4307046904 cites W2922083220 @default.
- W4307046904 cites W2940118123 @default.
- W4307046904 cites W2976282159 @default.
- W4307046904 cites W2983575492 @default.
- W4307046904 cites W2987984071 @default.
- W4307046904 cites W2989646980 @default.
- W4307046904 cites W2995726119 @default.
- W4307046904 cites W2997809778 @default.
- W4307046904 cites W3005407765 @default.
- W4307046904 cites W3007051560 @default.
- W4307046904 cites W3008088527 @default.
- W4307046904 cites W3008403139 @default.
- W4307046904 cites W3011576687 @default.
- W4307046904 cites W3016330481 @default.
- W4307046904 cites W3016522735 @default.
- W4307046904 cites W3017462139 @default.
- W4307046904 cites W3018651684 @default.
- W4307046904 cites W3033463646 @default.
- W4307046904 cites W3035982802 @default.
- W4307046904 cites W3042616902 @default.
- W4307046904 cites W3067356005 @default.
- W4307046904 cites W3111432325 @default.
- W4307046904 cites W3118662018 @default.
- W4307046904 cites W3127818531 @default.
- W4307046904 cites W3130391092 @default.
- W4307046904 cites W3142834936 @default.
- W4307046904 cites W3158308652 @default.
- W4307046904 cites W3195147880 @default.
- W4307046904 cites W3208337204 @default.
- W4307046904 doi "https://doi.org/10.1088/1755-1315/1097/1/012042" @default.
- W4307046904 hasPublicationYear "2022" @default.
- W4307046904 type Work @default.
- W4307046904 citedByCount "0" @default.
- W4307046904 crossrefType "journal-article" @default.
- W4307046904 hasAuthorship W4307046904A5001119680 @default.
- W4307046904 hasAuthorship W4307046904A5028490055 @default.
- W4307046904 hasAuthorship W4307046904A5079649654 @default.
- W4307046904 hasBestOaLocation W43070469041 @default.
- W4307046904 hasConcept C108583219 @default.
- W4307046904 hasConcept C118518473 @default.
- W4307046904 hasConcept C119857082 @default.
- W4307046904 hasConcept C154945302 @default.
- W4307046904 hasConcept C166957645 @default.
- W4307046904 hasConcept C205649164 @default.
- W4307046904 hasConcept C41008148 @default.
- W4307046904 hasConcept C54355233 @default.
- W4307046904 hasConcept C59519942 @default.
- W4307046904 hasConcept C86803240 @default.
- W4307046904 hasConceptScore W4307046904C108583219 @default.
- W4307046904 hasConceptScore W4307046904C118518473 @default.
- W4307046904 hasConceptScore W4307046904C119857082 @default.
- W4307046904 hasConceptScore W4307046904C154945302 @default.
- W4307046904 hasConceptScore W4307046904C166957645 @default.
- W4307046904 hasConceptScore W4307046904C205649164 @default.
- W4307046904 hasConceptScore W4307046904C41008148 @default.
- W4307046904 hasConceptScore W4307046904C54355233 @default.
- W4307046904 hasConceptScore W4307046904C59519942 @default.
- W4307046904 hasConceptScore W4307046904C86803240 @default.
- W4307046904 hasIssue "1" @default.
- W4307046904 hasLocation W43070469041 @default.
- W4307046904 hasOpenAccess W4307046904 @default.
- W4307046904 hasPrimaryLocation W43070469041 @default.
- W4307046904 hasRelatedWork W3014300295 @default.
- W4307046904 hasRelatedWork W3164822677 @default.
- W4307046904 hasRelatedWork W4220882927 @default.
- W4307046904 hasRelatedWork W4223943233 @default.
- W4307046904 hasRelatedWork W4225161397 @default.
- W4307046904 hasRelatedWork W4312200629 @default.
- W4307046904 hasRelatedWork W4360585206 @default.
- W4307046904 hasRelatedWork W4364306694 @default.
- W4307046904 hasRelatedWork W4380075502 @default.
- W4307046904 hasRelatedWork W4380086463 @default.
- W4307046904 hasVolume "1097" @default.
- W4307046904 isParatext "false" @default.
- W4307046904 isRetracted "false" @default.
- W4307046904 workType "article" @default.