Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307097559> ?p ?o ?g. }
- W4307097559 endingPage "122430" @default.
- W4307097559 startingPage "122430" @default.
- W4307097559 abstract "Optimization of processing parameters cannot rely on the trial-and-error method for the production of ultra-high purity metals owing to the complexity of indium raw material and multi-pass processing procedure. A multi-objective optimization strategy was proposed to optimize the process parameters for vertical zone refining of 7N-grade ultra-high purity indium (In) by using machine learning (ML). Firstly, classification models were established for certain impurities (Si, S, Fe, Zn, Ni, Cu and As). In these models, the Synthetic Minority Over-sampling Technique (SMOTE) was introduced to overcome the sample imbalance problem of the experimental dataset. The accuracy of these classification models reached above 0.9. Secondly, a ridge regression model was built to predict the total impurity content in the product. The root mean square error (RMSE) was 0.023, the Pearson correlation coefficient (r) was 0.91, and R-squared (R2) was 0.79. Using these two types of models, high-throughput virtual screening was performed to conduct vertical zone-refining experiments, which in turn validated the reliability of the models. Feature analysis by Shapley additive explanations (SHAP) revealed that the total impurity content in the final product strongly depended on the content of Ni and Sn impurities in the 6N-grade indium raw material and on the velocity parameter of the 2rd through 4th zone passes (V2). A lower V2 is favorable for eliminating impurities from indium raw material with total impurity content ranging from 0.2 ppm to 0.4 ppm." @default.
- W4307097559 created "2022-10-25" @default.
- W4307097559 creator A5003539049 @default.
- W4307097559 creator A5021682632 @default.
- W4307097559 creator A5026693597 @default.
- W4307097559 creator A5029666367 @default.
- W4307097559 creator A5064177292 @default.
- W4307097559 date "2023-01-01" @default.
- W4307097559 modified "2023-09-27" @default.
- W4307097559 title "Machine-learning-assisted multi-objective optimization in vertical zone refining of ultra-high purity indium" @default.
- W4307097559 cites W1974581229 @default.
- W4307097559 cites W1985716968 @default.
- W4307097559 cites W1995424045 @default.
- W4307097559 cites W2011874968 @default.
- W4307097559 cites W2018410807 @default.
- W4307097559 cites W2030263855 @default.
- W4307097559 cites W2037435196 @default.
- W4307097559 cites W2057575390 @default.
- W4307097559 cites W2063965491 @default.
- W4307097559 cites W2064299068 @default.
- W4307097559 cites W2065908050 @default.
- W4307097559 cites W2073601278 @default.
- W4307097559 cites W2074504373 @default.
- W4307097559 cites W2091084956 @default.
- W4307097559 cites W2148143831 @default.
- W4307097559 cites W2171647935 @default.
- W4307097559 cites W2790976471 @default.
- W4307097559 cites W2796842408 @default.
- W4307097559 cites W2883686176 @default.
- W4307097559 cites W2944893503 @default.
- W4307097559 cites W2972357367 @default.
- W4307097559 cites W2972488517 @default.
- W4307097559 cites W2973780358 @default.
- W4307097559 cites W3000355524 @default.
- W4307097559 cites W3092140696 @default.
- W4307097559 cites W3097665872 @default.
- W4307097559 cites W3111143570 @default.
- W4307097559 cites W3122008423 @default.
- W4307097559 cites W3127040762 @default.
- W4307097559 cites W3128807777 @default.
- W4307097559 cites W3156293366 @default.
- W4307097559 cites W3159346759 @default.
- W4307097559 cites W3160851961 @default.
- W4307097559 cites W3194385912 @default.
- W4307097559 cites W3194691195 @default.
- W4307097559 cites W3206683376 @default.
- W4307097559 cites W3209019826 @default.
- W4307097559 cites W3210035924 @default.
- W4307097559 cites W3212187065 @default.
- W4307097559 cites W3216119358 @default.
- W4307097559 cites W4211009829 @default.
- W4307097559 cites W4223980188 @default.
- W4307097559 cites W4229333888 @default.
- W4307097559 cites W4283211211 @default.
- W4307097559 cites W632697510 @default.
- W4307097559 doi "https://doi.org/10.1016/j.seppur.2022.122430" @default.
- W4307097559 hasPublicationYear "2023" @default.
- W4307097559 type Work @default.
- W4307097559 citedByCount "2" @default.
- W4307097559 countsByYear W43070975592023 @default.
- W4307097559 crossrefType "journal-article" @default.
- W4307097559 hasAuthorship W4307097559A5003539049 @default.
- W4307097559 hasAuthorship W4307097559A5021682632 @default.
- W4307097559 hasAuthorship W4307097559A5026693597 @default.
- W4307097559 hasAuthorship W4307097559A5029666367 @default.
- W4307097559 hasAuthorship W4307097559A5064177292 @default.
- W4307097559 hasConcept C105795698 @default.
- W4307097559 hasConcept C113196181 @default.
- W4307097559 hasConcept C127413603 @default.
- W4307097559 hasConcept C138885662 @default.
- W4307097559 hasConcept C139945424 @default.
- W4307097559 hasConcept C157764524 @default.
- W4307097559 hasConcept C178790620 @default.
- W4307097559 hasConcept C185592680 @default.
- W4307097559 hasConcept C186060115 @default.
- W4307097559 hasConcept C191897082 @default.
- W4307097559 hasConcept C192562407 @default.
- W4307097559 hasConcept C206139338 @default.
- W4307097559 hasConcept C21880701 @default.
- W4307097559 hasConcept C2776401178 @default.
- W4307097559 hasConcept C2780092901 @default.
- W4307097559 hasConcept C33923547 @default.
- W4307097559 hasConcept C41008148 @default.
- W4307097559 hasConcept C41895202 @default.
- W4307097559 hasConcept C43617362 @default.
- W4307097559 hasConcept C543292547 @default.
- W4307097559 hasConcept C555944384 @default.
- W4307097559 hasConcept C60044698 @default.
- W4307097559 hasConcept C71987851 @default.
- W4307097559 hasConcept C76155785 @default.
- W4307097559 hasConcept C86803240 @default.
- W4307097559 hasConceptScore W4307097559C105795698 @default.
- W4307097559 hasConceptScore W4307097559C113196181 @default.
- W4307097559 hasConceptScore W4307097559C127413603 @default.
- W4307097559 hasConceptScore W4307097559C138885662 @default.
- W4307097559 hasConceptScore W4307097559C139945424 @default.
- W4307097559 hasConceptScore W4307097559C157764524 @default.
- W4307097559 hasConceptScore W4307097559C178790620 @default.