Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307103674> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4307103674 endingPage "100039" @default.
- W4307103674 startingPage "100039" @default.
- W4307103674 abstract "To support power grid operators to detect and evaluate potential power grid congestions due to the electrification of urban private cars, accurate models are needed to determine the charging energy and power demand of battery electric vehicles (BEVs) with high spatial and temporal resolution. Typically, e-mobility traffic simulations are used for this purpose. In particular, activity-based mobility models are used because they individually model the activity and travel patterns of each person in the considered geographical area. In addition to inaccuracies in determining the spatial distribution of BEV charging demand, one main limitation of the activity-based models proposed in the literature is that they rely on data describing traffic flow in the considered area. However, these data are not available for most places in the world. Therefore, this paper proposes a novel approach to develop an activity-based model that overcomes the spatial limitations and does not require traffic flow data as an input parameter. Instead, a route assignment procedure assigns a destination to each BEV trip based on the evaluation of all possible destinations. The basis of this evaluation is the travel distance and speed between the origin of the trip and the destination, as well as the car-access attractiveness and the availability of parking spots at the destinations. The applicability of this model is demonstrated for the urban area of Berlin, Germany, and its 448 sub-districts. For each district in Berlin, both the required daily BEV charging energy demand and the power demand are determined. In addition, the load shifting potential is investigated for an exemplary district. The results show that peak power demand can be reduced by up to 31.7% in comparison to uncontrolled charging." @default.
- W4307103674 created "2022-10-27" @default.
- W4307103674 creator A5013000152 @default.
- W4307103674 creator A5072075845 @default.
- W4307103674 creator A5080293953 @default.
- W4307103674 creator A5086176854 @default.
- W4307103674 date "2023-02-01" @default.
- W4307103674 modified "2023-10-17" @default.
- W4307103674 title "Forecasting the spatial and temporal charging demand of fully electrified urban private car transportation based on large-scale traffic simulation" @default.
- W4307103674 cites W1963947061 @default.
- W4307103674 cites W1969691955 @default.
- W4307103674 cites W1992237305 @default.
- W4307103674 cites W2050974717 @default.
- W4307103674 cites W2056427612 @default.
- W4307103674 cites W2060670113 @default.
- W4307103674 cites W2094392268 @default.
- W4307103674 cites W2104037348 @default.
- W4307103674 cites W2104196469 @default.
- W4307103674 cites W2111531576 @default.
- W4307103674 cites W2141312979 @default.
- W4307103674 cites W2164211305 @default.
- W4307103674 cites W2295483171 @default.
- W4307103674 cites W2535580946 @default.
- W4307103674 cites W2735838282 @default.
- W4307103674 cites W2900115068 @default.
- W4307103674 cites W2974793789 @default.
- W4307103674 cites W3016793465 @default.
- W4307103674 cites W3116499018 @default.
- W4307103674 cites W3154597888 @default.
- W4307103674 cites W4237105443 @default.
- W4307103674 cites W4250062894 @default.
- W4307103674 doi "https://doi.org/10.1016/j.geits.2022.100039" @default.
- W4307103674 hasPublicationYear "2023" @default.
- W4307103674 type Work @default.
- W4307103674 citedByCount "3" @default.
- W4307103674 countsByYear W43071036742023 @default.
- W4307103674 crossrefType "journal-article" @default.
- W4307103674 hasAuthorship W4307103674A5013000152 @default.
- W4307103674 hasAuthorship W4307103674A5072075845 @default.
- W4307103674 hasAuthorship W4307103674A5080293953 @default.
- W4307103674 hasAuthorship W4307103674A5086176854 @default.
- W4307103674 hasBestOaLocation W43071036741 @default.
- W4307103674 hasConcept C119599485 @default.
- W4307103674 hasConcept C127413603 @default.
- W4307103674 hasConcept C13280743 @default.
- W4307103674 hasConcept C187691185 @default.
- W4307103674 hasConcept C205649164 @default.
- W4307103674 hasConcept C206658404 @default.
- W4307103674 hasConcept C207512268 @default.
- W4307103674 hasConcept C22212356 @default.
- W4307103674 hasConcept C2778324724 @default.
- W4307103674 hasConcept C2778391309 @default.
- W4307103674 hasConcept C2778755073 @default.
- W4307103674 hasConcept C2780015235 @default.
- W4307103674 hasConcept C38652104 @default.
- W4307103674 hasConcept C41008148 @default.
- W4307103674 hasConcept C44154836 @default.
- W4307103674 hasConcept C58640448 @default.
- W4307103674 hasConceptScore W4307103674C119599485 @default.
- W4307103674 hasConceptScore W4307103674C127413603 @default.
- W4307103674 hasConceptScore W4307103674C13280743 @default.
- W4307103674 hasConceptScore W4307103674C187691185 @default.
- W4307103674 hasConceptScore W4307103674C205649164 @default.
- W4307103674 hasConceptScore W4307103674C206658404 @default.
- W4307103674 hasConceptScore W4307103674C207512268 @default.
- W4307103674 hasConceptScore W4307103674C22212356 @default.
- W4307103674 hasConceptScore W4307103674C2778324724 @default.
- W4307103674 hasConceptScore W4307103674C2778391309 @default.
- W4307103674 hasConceptScore W4307103674C2778755073 @default.
- W4307103674 hasConceptScore W4307103674C2780015235 @default.
- W4307103674 hasConceptScore W4307103674C38652104 @default.
- W4307103674 hasConceptScore W4307103674C41008148 @default.
- W4307103674 hasConceptScore W4307103674C44154836 @default.
- W4307103674 hasConceptScore W4307103674C58640448 @default.
- W4307103674 hasIssue "1" @default.
- W4307103674 hasLocation W43071036741 @default.
- W4307103674 hasOpenAccess W4307103674 @default.
- W4307103674 hasPrimaryLocation W43071036741 @default.
- W4307103674 hasRelatedWork W1928680093 @default.
- W4307103674 hasRelatedWork W2093169982 @default.
- W4307103674 hasRelatedWork W2356232345 @default.
- W4307103674 hasRelatedWork W2374927840 @default.
- W4307103674 hasRelatedWork W2380863684 @default.
- W4307103674 hasRelatedWork W2389374605 @default.
- W4307103674 hasRelatedWork W3016994274 @default.
- W4307103674 hasRelatedWork W3147154944 @default.
- W4307103674 hasRelatedWork W624967826 @default.
- W4307103674 hasRelatedWork W632450529 @default.
- W4307103674 hasVolume "2" @default.
- W4307103674 isParatext "false" @default.
- W4307103674 isRetracted "false" @default.
- W4307103674 workType "article" @default.