Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307109265> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4307109265 endingPage "114823" @default.
- W4307109265 startingPage "114823" @default.
- W4307109265 abstract "Electronic components of which reliability cannot be quantified are unacceptable and potentially hazardous, especially in safety-relevant areas such as driver assistance systems and medical technology where the zero-error principle applies. Reliability as a quality criterion has its origin in production, i.e. process variations have a negative influence on the structural integrity of the contact elements on the packaging and interconnect technology and, thus on the device performance in the field under thermo-mechanical load (temperature changes, vibration, humidity). At present, to ensure reproducibility of the reliability of each component, regular quality tests are often carried out in practice. However, a better and reliable approach will carry out 100 % inline checks for traceability and immediate readjustment. This work is the first step towards developing an intelligent non-destructive inline-capable failure analysis technique using infrared thermography. Good data forms the base on which robust and accurate AI algorithms can be trained and developed. However, the obtained thermographic images need to be processed so that subsurface defects can be detected. In this work, prominent algorithms, namely Pulse Phase Thermography (PPT), Thermographic Signal Reconstruction (TSR), Principal Component Thermography (PCT), Slope and Correlation Coefficient, have been thoroughly discussed and examined on the thermographic sequence from a plexiglass sample. A hybrid algorithm of TSR and PCT has also been suggested with promising results. In the end, potential post-processing algorithms from which the obtained results can be used for training an ML/AI model have been discussed. The major problem associated with the deep learning approach is the lack of data in the training set. The model's performance is dependent on the quality and quantity of the training data. The training data should be a good representation of the real-world scenario, i.e. it should be accurate enough and contain enough images, including exceptions for learning reliable features. However, getting sufficient data is a challenge in the manufacturing industry. However, using the Finite Element Model (FEM) approach for data generation can help overcome the data hurdle. In this paper, we also evaluate the potential application of FEM and the problems one faces when trying to generate a large amount of data for training using FEM. • Evaluation of post-processing algorithms for infrared thermography for developing an intelligent failure analysis system. • Evaluation of algorithms based on signal to background contrast and the ease of finding the image with the most information. • The combination of thermal signal reconstruction (TSR) and principal component thermography (PCT) gave the best results. • Exploring the role of finite element modelling in data augmentation for training a neural network. • Study the influence of the element size in finite element modelling and the surface temperature images." @default.
- W4307109265 created "2022-10-27" @default.
- W4307109265 creator A5052364259 @default.
- W4307109265 creator A5056451424 @default.
- W4307109265 creator A5064493058 @default.
- W4307109265 creator A5091581494 @default.
- W4307109265 date "2022-12-01" @default.
- W4307109265 modified "2023-09-26" @default.
- W4307109265 title "Towards development of an intelligent failure analysis system based on infrared thermography" @default.
- W4307109265 cites W1977012613 @default.
- W4307109265 cites W1982104027 @default.
- W4307109265 cites W1987574712 @default.
- W4307109265 cites W1994355750 @default.
- W4307109265 cites W2000523966 @default.
- W4307109265 cites W2061171222 @default.
- W4307109265 cites W2089528765 @default.
- W4307109265 cites W2091675212 @default.
- W4307109265 cites W2298335408 @default.
- W4307109265 cites W2564011837 @default.
- W4307109265 cites W2897121656 @default.
- W4307109265 cites W2981103203 @default.
- W4307109265 cites W3022701396 @default.
- W4307109265 cites W3041010388 @default.
- W4307109265 cites W3099878876 @default.
- W4307109265 doi "https://doi.org/10.1016/j.microrel.2022.114823" @default.
- W4307109265 hasPublicationYear "2022" @default.
- W4307109265 type Work @default.
- W4307109265 citedByCount "0" @default.
- W4307109265 crossrefType "journal-article" @default.
- W4307109265 hasAuthorship W4307109265A5052364259 @default.
- W4307109265 hasAuthorship W4307109265A5056451424 @default.
- W4307109265 hasAuthorship W4307109265A5064493058 @default.
- W4307109265 hasAuthorship W4307109265A5091581494 @default.
- W4307109265 hasConcept C120665830 @default.
- W4307109265 hasConcept C121332964 @default.
- W4307109265 hasConcept C127413603 @default.
- W4307109265 hasConcept C134306372 @default.
- W4307109265 hasConcept C158355884 @default.
- W4307109265 hasConcept C200601418 @default.
- W4307109265 hasConcept C201995342 @default.
- W4307109265 hasConcept C2776542497 @default.
- W4307109265 hasConcept C2779222261 @default.
- W4307109265 hasConcept C33923547 @default.
- W4307109265 hasConcept C41008148 @default.
- W4307109265 hasConcept C77595967 @default.
- W4307109265 hasConceptScore W4307109265C120665830 @default.
- W4307109265 hasConceptScore W4307109265C121332964 @default.
- W4307109265 hasConceptScore W4307109265C127413603 @default.
- W4307109265 hasConceptScore W4307109265C134306372 @default.
- W4307109265 hasConceptScore W4307109265C158355884 @default.
- W4307109265 hasConceptScore W4307109265C200601418 @default.
- W4307109265 hasConceptScore W4307109265C201995342 @default.
- W4307109265 hasConceptScore W4307109265C2776542497 @default.
- W4307109265 hasConceptScore W4307109265C2779222261 @default.
- W4307109265 hasConceptScore W4307109265C33923547 @default.
- W4307109265 hasConceptScore W4307109265C41008148 @default.
- W4307109265 hasConceptScore W4307109265C77595967 @default.
- W4307109265 hasFunder F4320338080 @default.
- W4307109265 hasLocation W43071092651 @default.
- W4307109265 hasOpenAccess W4307109265 @default.
- W4307109265 hasPrimaryLocation W43071092651 @default.
- W4307109265 hasRelatedWork W103601459 @default.
- W4307109265 hasRelatedWork W2021325393 @default.
- W4307109265 hasRelatedWork W2286188758 @default.
- W4307109265 hasRelatedWork W2350104828 @default.
- W4307109265 hasRelatedWork W2478866779 @default.
- W4307109265 hasRelatedWork W2514152378 @default.
- W4307109265 hasRelatedWork W2562205166 @default.
- W4307109265 hasRelatedWork W2899084033 @default.
- W4307109265 hasRelatedWork W4296666717 @default.
- W4307109265 hasRelatedWork W4310007303 @default.
- W4307109265 hasVolume "139" @default.
- W4307109265 isParatext "false" @default.
- W4307109265 isRetracted "false" @default.
- W4307109265 workType "article" @default.