Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307117521> ?p ?o ?g. }
- W4307117521 endingPage "1752" @default.
- W4307117521 startingPage "1752" @default.
- W4307117521 abstract "Nitrogen (N) is an important factor limiting crop productivity, and accurate estimation of the N content in winter wheat can effectively monitor the crop growth status. The objective of this study was to evaluate the ability of the unmanned aerial vehicle (UAV) platform with multiple sensors to estimate the N content of winter wheat using machine learning algorithms; to collect multispectral (MS), red-green-blue (RGB), and thermal infrared (TIR) images to construct a multi-source data fusion dataset; to predict the N content in winter wheat using random forest regression (RFR), support vector machine regression (SVR), and partial least squares regression (PLSR). The results showed that the mean absolute error (MAE) and relative root-mean-square error (rRMSE) of all models showed an overall decreasing trend with an increasing number of input features from different data sources. The accuracy varied among the three algorithms used, with RFR achieving the highest prediction accuracy with an MAE of 1.616 mg/g and rRMSE of 12.333%. For models built with single sensor data, MS images achieved a higher accuracy than RGB and TIR images. This study showed that the multi-source data fusion technique can enhance the prediction of N content in winter wheat and provide assistance for decision-making in practical production." @default.
- W4307117521 created "2022-10-27" @default.
- W4307117521 creator A5011803621 @default.
- W4307117521 creator A5044246694 @default.
- W4307117521 creator A5051903441 @default.
- W4307117521 creator A5073424108 @default.
- W4307117521 creator A5087631945 @default.
- W4307117521 creator A5090434992 @default.
- W4307117521 date "2022-10-23" @default.
- W4307117521 modified "2023-10-14" @default.
- W4307117521 title "Estimation of Nitrogen Content in Winter Wheat Based on Multi-Source Data Fusion and Machine Learning" @default.
- W4307117521 cites W1964050442 @default.
- W4307117521 cites W1964357740 @default.
- W4307117521 cites W1973994611 @default.
- W4307117521 cites W1986270712 @default.
- W4307117521 cites W2000102737 @default.
- W4307117521 cites W2012568975 @default.
- W4307117521 cites W2024663969 @default.
- W4307117521 cites W2063623478 @default.
- W4307117521 cites W2064636932 @default.
- W4307117521 cites W2067777246 @default.
- W4307117521 cites W2069209512 @default.
- W4307117521 cites W2109006150 @default.
- W4307117521 cites W2138695073 @default.
- W4307117521 cites W2163410149 @default.
- W4307117521 cites W2168705867 @default.
- W4307117521 cites W2171747502 @default.
- W4307117521 cites W2326195380 @default.
- W4307117521 cites W2614563231 @default.
- W4307117521 cites W2751108974 @default.
- W4307117521 cites W2753495419 @default.
- W4307117521 cites W2767407176 @default.
- W4307117521 cites W2803133125 @default.
- W4307117521 cites W2887037979 @default.
- W4307117521 cites W2911964244 @default.
- W4307117521 cites W2939718292 @default.
- W4307117521 cites W2969597999 @default.
- W4307117521 cites W2980043973 @default.
- W4307117521 cites W2986737861 @default.
- W4307117521 cites W2990467450 @default.
- W4307117521 cites W2992086439 @default.
- W4307117521 cites W2996041315 @default.
- W4307117521 cites W3005430388 @default.
- W4307117521 cites W3005560196 @default.
- W4307117521 cites W3010955769 @default.
- W4307117521 cites W3019833855 @default.
- W4307117521 cites W3033075976 @default.
- W4307117521 cites W3034240081 @default.
- W4307117521 cites W3037068037 @default.
- W4307117521 cites W3074361764 @default.
- W4307117521 cites W3094233092 @default.
- W4307117521 cites W3094237440 @default.
- W4307117521 cites W3095721277 @default.
- W4307117521 cites W3109695596 @default.
- W4307117521 cites W3113158649 @default.
- W4307117521 cites W3120043643 @default.
- W4307117521 cites W3128511351 @default.
- W4307117521 cites W3135777898 @default.
- W4307117521 cites W3151062789 @default.
- W4307117521 cites W3153796798 @default.
- W4307117521 cites W3173312289 @default.
- W4307117521 cites W4205087445 @default.
- W4307117521 cites W4220668191 @default.
- W4307117521 cites W4221038349 @default.
- W4307117521 cites W4223412452 @default.
- W4307117521 cites W4281779014 @default.
- W4307117521 cites W4283215620 @default.
- W4307117521 cites W4283768492 @default.
- W4307117521 cites W4289653753 @default.
- W4307117521 doi "https://doi.org/10.3390/agriculture12111752" @default.
- W4307117521 hasPublicationYear "2022" @default.
- W4307117521 type Work @default.
- W4307117521 citedByCount "3" @default.
- W4307117521 countsByYear W43071175212023 @default.
- W4307117521 crossrefType "journal-article" @default.
- W4307117521 hasAuthorship W4307117521A5011803621 @default.
- W4307117521 hasAuthorship W4307117521A5044246694 @default.
- W4307117521 hasAuthorship W4307117521A5051903441 @default.
- W4307117521 hasAuthorship W4307117521A5073424108 @default.
- W4307117521 hasAuthorship W4307117521A5087631945 @default.
- W4307117521 hasAuthorship W4307117521A5090434992 @default.
- W4307117521 hasBestOaLocation W43071175211 @default.
- W4307117521 hasConcept C105795698 @default.
- W4307117521 hasConcept C12267149 @default.
- W4307117521 hasConcept C139945424 @default.
- W4307117521 hasConcept C154945302 @default.
- W4307117521 hasConcept C169258074 @default.
- W4307117521 hasConcept C173163844 @default.
- W4307117521 hasConcept C205649164 @default.
- W4307117521 hasConcept C22354355 @default.
- W4307117521 hasConcept C33923547 @default.
- W4307117521 hasConcept C33954974 @default.
- W4307117521 hasConcept C39432304 @default.
- W4307117521 hasConcept C41008148 @default.
- W4307117521 hasConcept C62649853 @default.
- W4307117521 hasConcept C82990744 @default.
- W4307117521 hasConceptScore W4307117521C105795698 @default.
- W4307117521 hasConceptScore W4307117521C12267149 @default.