Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307154503> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4307154503 endingPage "110666" @default.
- W4307154503 startingPage "110666" @default.
- W4307154503 abstract "Identification of the so-called dynamic networks is one of the most challenging problems appeared recently in control literature. Such systems consist of large-scale interconnected systems, also called modules. To recover full networks dynamics the two crucial steps are topology detection, where one has to infer from data which connections are active, and modules estimation. Since a small percentage of connections are effective in many real systems, the problem finds also fundamental connections with group-sparse estimation. In particular, in the linear setting modules correspond to unknown impulse responses expected to have null norm but in a small fraction of samples. This paper introduces a new Bayesian approach for linear dynamic networks identification where impulse responses are described through the combination of two particular prior distributions. The first one is a block version of the horseshoe prior, a model possessing important global–local shrinkage features. The second one is the stable spline prior, that encodes information on smooth-exponential decay of the modules. The resulting model is called stable spline horseshoe (SSH) prior. It implements aggressive shrinkage of small impulse responses while larger impulse responses are conveniently subject to stable spline regularization. Inference is performed by a Markov Chain Monte Carlo scheme, tailored to the dynamic context and able to efficiently return the posterior of the modules in sampled form. Numerical studies show that the new approach can accurately reconstruct “line by line” networks dynamics without assuming any knowledge on the topology also when thousands of unknown impulse response coefficients must be inferred from data sets of relatively small size." @default.
- W4307154503 created "2022-10-28" @default.
- W4307154503 creator A5058462868 @default.
- W4307154503 creator A5060156794 @default.
- W4307154503 date "2022-12-01" @default.
- W4307154503 modified "2023-10-02" @default.
- W4307154503 title "Sparse estimation in linear dynamic networks using the stable spline horseshoe prior" @default.
- W4307154503 cites W1900832178 @default.
- W4307154503 cites W1978282180 @default.
- W4307154503 cites W1982652137 @default.
- W4307154503 cites W1986280275 @default.
- W4307154503 cites W2021065610 @default.
- W4307154503 cites W2037479549 @default.
- W4307154503 cites W2063978378 @default.
- W4307154503 cites W2086901931 @default.
- W4307154503 cites W2092766760 @default.
- W4307154503 cites W2107861998 @default.
- W4307154503 cites W2113146118 @default.
- W4307154503 cites W2114169935 @default.
- W4307154503 cites W2150847344 @default.
- W4307154503 cites W2159660986 @default.
- W4307154503 cites W2159929956 @default.
- W4307154503 cites W2161083632 @default.
- W4307154503 cites W2171853113 @default.
- W4307154503 cites W2201840673 @default.
- W4307154503 cites W2284915482 @default.
- W4307154503 cites W2304351419 @default.
- W4307154503 cites W2339048773 @default.
- W4307154503 cites W2593163465 @default.
- W4307154503 cites W2767775086 @default.
- W4307154503 cites W2769132152 @default.
- W4307154503 cites W2780971228 @default.
- W4307154503 cites W2951716158 @default.
- W4307154503 cites W2963819503 @default.
- W4307154503 cites W2992870756 @default.
- W4307154503 cites W2996558664 @default.
- W4307154503 cites W3024041059 @default.
- W4307154503 cites W3024607720 @default.
- W4307154503 cites W3045302579 @default.
- W4307154503 cites W3095194325 @default.
- W4307154503 cites W3106385100 @default.
- W4307154503 cites W3107003040 @default.
- W4307154503 cites W809676393 @default.
- W4307154503 doi "https://doi.org/10.1016/j.automatica.2022.110666" @default.
- W4307154503 hasPublicationYear "2022" @default.
- W4307154503 type Work @default.
- W4307154503 citedByCount "2" @default.
- W4307154503 countsByYear W43071545032022 @default.
- W4307154503 countsByYear W43071545032023 @default.
- W4307154503 crossrefType "journal-article" @default.
- W4307154503 hasAuthorship W4307154503A5058462868 @default.
- W4307154503 hasAuthorship W4307154503A5060156794 @default.
- W4307154503 hasConcept C10390562 @default.
- W4307154503 hasConcept C11413529 @default.
- W4307154503 hasConcept C114614502 @default.
- W4307154503 hasConcept C121332964 @default.
- W4307154503 hasConcept C126255220 @default.
- W4307154503 hasConcept C127413603 @default.
- W4307154503 hasConcept C184720557 @default.
- W4307154503 hasConcept C28826006 @default.
- W4307154503 hasConcept C33923547 @default.
- W4307154503 hasConcept C41008148 @default.
- W4307154503 hasConcept C62520636 @default.
- W4307154503 hasConcept C66938386 @default.
- W4307154503 hasConcept C70836080 @default.
- W4307154503 hasConceptScore W4307154503C10390562 @default.
- W4307154503 hasConceptScore W4307154503C11413529 @default.
- W4307154503 hasConceptScore W4307154503C114614502 @default.
- W4307154503 hasConceptScore W4307154503C121332964 @default.
- W4307154503 hasConceptScore W4307154503C126255220 @default.
- W4307154503 hasConceptScore W4307154503C127413603 @default.
- W4307154503 hasConceptScore W4307154503C184720557 @default.
- W4307154503 hasConceptScore W4307154503C28826006 @default.
- W4307154503 hasConceptScore W4307154503C33923547 @default.
- W4307154503 hasConceptScore W4307154503C41008148 @default.
- W4307154503 hasConceptScore W4307154503C62520636 @default.
- W4307154503 hasConceptScore W4307154503C66938386 @default.
- W4307154503 hasConceptScore W4307154503C70836080 @default.
- W4307154503 hasLocation W43071545031 @default.
- W4307154503 hasOpenAccess W4307154503 @default.
- W4307154503 hasPrimaryLocation W43071545031 @default.
- W4307154503 hasRelatedWork W1987371472 @default.
- W4307154503 hasRelatedWork W1994109492 @default.
- W4307154503 hasRelatedWork W2027108164 @default.
- W4307154503 hasRelatedWork W2089811522 @default.
- W4307154503 hasRelatedWork W2092244978 @default.
- W4307154503 hasRelatedWork W2094362282 @default.
- W4307154503 hasRelatedWork W2351859806 @default.
- W4307154503 hasRelatedWork W2386767533 @default.
- W4307154503 hasRelatedWork W2783412920 @default.
- W4307154503 hasRelatedWork W4239376463 @default.
- W4307154503 hasVolume "146" @default.
- W4307154503 isParatext "false" @default.
- W4307154503 isRetracted "false" @default.
- W4307154503 workType "article" @default.