Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307169042> ?p ?o ?g. }
- W4307169042 endingPage "23" @default.
- W4307169042 startingPage "1" @default.
- W4307169042 abstract "Eye-tracking technology has started to become an integral component of new display devices such as virtual and augmented reality headsets. Applications of gaze information range from new interaction techniques that exploit eye patterns to gaze-contingent digital content creation. However, system latency is still a significant issue in many of these applications because it breaks the synchronization between the current and measured gaze positions. Consequently, it may lead to unwanted visual artifacts and degradation of the user experience. In this work, we focus on foveated rendering applications where the quality of an image is reduced towards the periphery for computational savings. In foveated rendering, the presence of system latency leads to delayed updates to the rendered frame, making the quality degradation visible to the user. To address this issue and to combat system latency, recent work proposes using saccade landing position prediction to extrapolate gaze information from delayed eye tracking samples. Although the benefits of such a strategy have already been demonstrated, the solutions range from simple and efficient ones, which make several assumptions about the saccadic eye movements, to more complex and costly ones, which use machine learning techniques. However, it is unclear to what extent the prediction can benefit from accounting for additional factors and how more complex predictions can be performed efficiently to respect the latency requirements. This paper presents a series of experiments investigating the importance of different factors for saccades prediction in common virtual and augmented reality applications. In particular, we investigate the effects of saccade orientation in 3D space and smooth pursuit eye-motion (SPEM) and how their influence compares to the variability across users. We also present a simple, yet efficient post-hoc correction method that adapts existing saccade prediction methods to handle these factors without performing extensive data collection. Furthermore, our investigation and the correction technique may also help future developments of machine-learning-based techniques by limiting the required amount of training data." @default.
- W4307169042 created "2022-10-29" @default.
- W4307169042 creator A5016434967 @default.
- W4307169042 creator A5016646037 @default.
- W4307169042 creator A5058028526 @default.
- W4307169042 creator A5064282773 @default.
- W4307169042 date "2023-01-11" @default.
- W4307169042 modified "2023-10-18" @default.
- W4307169042 title "Practical Saccade Prediction for Head-Mounted Displays: Towards a Comprehensive Model" @default.
- W4307169042 cites W109424951 @default.
- W4307169042 cites W163564816 @default.
- W4307169042 cites W1765423497 @default.
- W4307169042 cites W1872147203 @default.
- W4307169042 cites W1966477410 @default.
- W4307169042 cites W1968607211 @default.
- W4307169042 cites W1971896249 @default.
- W4307169042 cites W1972031247 @default.
- W4307169042 cites W1979728335 @default.
- W4307169042 cites W1985095850 @default.
- W4307169042 cites W2003185031 @default.
- W4307169042 cites W2004971537 @default.
- W4307169042 cites W2006656100 @default.
- W4307169042 cites W2009011611 @default.
- W4307169042 cites W2012987961 @default.
- W4307169042 cites W2014144031 @default.
- W4307169042 cites W2017598974 @default.
- W4307169042 cites W2018057320 @default.
- W4307169042 cites W2021582424 @default.
- W4307169042 cites W2021691765 @default.
- W4307169042 cites W2023508164 @default.
- W4307169042 cites W2025230767 @default.
- W4307169042 cites W2026088041 @default.
- W4307169042 cites W2027385118 @default.
- W4307169042 cites W2029043621 @default.
- W4307169042 cites W2029228773 @default.
- W4307169042 cites W2030215259 @default.
- W4307169042 cites W2030340937 @default.
- W4307169042 cites W2049634773 @default.
- W4307169042 cites W2051398121 @default.
- W4307169042 cites W2056839921 @default.
- W4307169042 cites W2057130156 @default.
- W4307169042 cites W2057812162 @default.
- W4307169042 cites W2068695435 @default.
- W4307169042 cites W2076154371 @default.
- W4307169042 cites W2082245336 @default.
- W4307169042 cites W2083442750 @default.
- W4307169042 cites W2084438519 @default.
- W4307169042 cites W2097467470 @default.
- W4307169042 cites W2099740415 @default.
- W4307169042 cites W2118962694 @default.
- W4307169042 cites W2119637333 @default.
- W4307169042 cites W2131596215 @default.
- W4307169042 cites W2133045540 @default.
- W4307169042 cites W2133189852 @default.
- W4307169042 cites W2147994416 @default.
- W4307169042 cites W2153483702 @default.
- W4307169042 cites W2189094472 @default.
- W4307169042 cites W2292325497 @default.
- W4307169042 cites W2307291773 @default.
- W4307169042 cites W2426081972 @default.
- W4307169042 cites W2463595258 @default.
- W4307169042 cites W2509579630 @default.
- W4307169042 cites W2510115780 @default.
- W4307169042 cites W2523629012 @default.
- W4307169042 cites W2551546500 @default.
- W4307169042 cites W2738132155 @default.
- W4307169042 cites W2755643607 @default.
- W4307169042 cites W2774725499 @default.
- W4307169042 cites W2883631892 @default.
- W4307169042 cites W2889087137 @default.
- W4307169042 cites W2889474212 @default.
- W4307169042 cites W2892137939 @default.
- W4307169042 cites W2896300849 @default.
- W4307169042 cites W2908046343 @default.
- W4307169042 cites W2911721666 @default.
- W4307169042 cites W2941909038 @default.
- W4307169042 cites W2984622499 @default.
- W4307169042 cites W3011542441 @default.
- W4307169042 cites W3028926459 @default.
- W4307169042 cites W3127169998 @default.
- W4307169042 cites W3132649295 @default.
- W4307169042 cites W3152424813 @default.
- W4307169042 cites W4242905771 @default.
- W4307169042 doi "https://doi.org/10.1145/3568311" @default.
- W4307169042 hasPublicationYear "2023" @default.
- W4307169042 type Work @default.
- W4307169042 citedByCount "0" @default.
- W4307169042 crossrefType "journal-article" @default.
- W4307169042 hasAuthorship W4307169042A5016434967 @default.
- W4307169042 hasAuthorship W4307169042A5016646037 @default.
- W4307169042 hasAuthorship W4307169042A5058028526 @default.
- W4307169042 hasAuthorship W4307169042A5064282773 @default.
- W4307169042 hasBestOaLocation W43071690422 @default.
- W4307169042 hasConcept C107457646 @default.
- W4307169042 hasConcept C11054436 @default.
- W4307169042 hasConcept C112698675 @default.
- W4307169042 hasConcept C144133560 @default.
- W4307169042 hasConcept C153050134 @default.