Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307185979> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4307185979 abstract "Abstract There is increasing emphasis being placed on cuffless blood pressure (BP) monitoring using the electrocardiogram (ECG) and photoplethysmogram (PPG). These signals have previously been employed to compute estimates of the pulse arrival time (PAT, the time between characteristic fiducial points on the ECG and PPG) as a surrogate for BP. Current work in this field is focused on using either the ECG or the PPG alone as a single source BP estimator using characteristic morphological features and machine learning models. However, the appropriate features and models to use remain unclear. As a result, BP estimation using the ECG or the PPG signals alone has produced inconclusive results. In this work, we investigated the best features available from the PPG and the ECG for BP estimation using both linear and non-linear models. We conducted a clinical study involving 30 healthy volunteers (53.8% female, 28 (± 9) years old, with a body mass index of 22.5± (5.2 kg/m2). Each session lasted 28.0 (± 0.12) minutes and BP was varied by administering an infusion of phenylephrine, a medication that causes arterial and venous vasoconstriction. We extracted a large and diverse set of features from both the PPG and the ECG and assessed their individual importance for estimating changes in BP (∆BP) using a ranking coefficient. In addition to features commonly used in the literature, we propose new features extracted from both signals. We implemented linear (ordinary least squares, OLS) and non-linear (random forest, RF) machine learning models to estimate ∆BP. We adopted a hybrid calibration strategy by including patient demographics in the feature set. We trained, tuned, and evaluated these models in a nested leave-one-subject-out cross-validation framework and we reported the results as correlation coefficient (ρp), root mean squared error (RMSE), and mean absolute error (MAE). We compared our results to those of estimating ∆BP using PAT. The non-linear RF model significantly (p < 0.05) outperformed the linear OLS model using both the PPG and the ECG signals across all performance metrics. Estimating ∆SBP using the PPG alone (ρp = 0.86 (0.23), RMSE = 5.66 (4.76) mmHg, MAE =4.86 (4.29) mmHg) performed significantly better than using the ECG alone (ρp = 0.69 (0.45), RMSE = 6.79 (4.76) mmHg,MAE = 5.28 (4.57) mmHg), all p < 0.001. Estimating ∆BP using features from the PPG alone had a similar performance to that of using PAT (which requires a simultaneous ECG signal). Kurtosis of the PPG waveform showed consistently high feature ranking for both the OLS and RF models. Additionally, the highest ranking features from the PPG largely modelled increasing reflected wave interference driven by changes in arterial stiffness. This finding was supported by changes observed in the PPG waveform in response to the phenylephrine infusion. However, a large number of features were required for accurate BP estimation, highlighting the high complexity of the problem. We conclude that the PPG alone may be further explored as a potential single source, cuffless, blood pressure estimator. The use of the ECG alone is not justified. Non-linear models may perform better as they are able to incorporate interactions between feature values and demographics. However, demographics may not adequately account for the unique and individualised relationship between the extracted features and BP." @default.
- W4307185979 created "2022-10-29" @default.
- W4307185979 creator A5011265675 @default.
- W4307185979 creator A5013117957 @default.
- W4307185979 creator A5025327657 @default.
- W4307185979 creator A5027823481 @default.
- W4307185979 creator A5045579048 @default.
- W4307185979 creator A5083848903 @default.
- W4307185979 date "2022-10-24" @default.
- W4307185979 modified "2023-10-18" @default.
- W4307185979 title "Features from the photoplethysmogram and the electrocardiogram for estimating changes in blood pressure" @default.
- W4307185979 doi "https://doi.org/10.21203/rs.3.rs-2156005/v1" @default.
- W4307185979 hasPublicationYear "2022" @default.
- W4307185979 type Work @default.
- W4307185979 citedByCount "0" @default.
- W4307185979 crossrefType "posted-content" @default.
- W4307185979 hasAuthorship W4307185979A5011265675 @default.
- W4307185979 hasAuthorship W4307185979A5013117957 @default.
- W4307185979 hasAuthorship W4307185979A5025327657 @default.
- W4307185979 hasAuthorship W4307185979A5027823481 @default.
- W4307185979 hasAuthorship W4307185979A5045579048 @default.
- W4307185979 hasAuthorship W4307185979A5083848903 @default.
- W4307185979 hasBestOaLocation W43071859791 @default.
- W4307185979 hasConcept C106131492 @default.
- W4307185979 hasConcept C116390426 @default.
- W4307185979 hasConcept C119857082 @default.
- W4307185979 hasConcept C126322002 @default.
- W4307185979 hasConcept C13852961 @default.
- W4307185979 hasConcept C153180895 @default.
- W4307185979 hasConcept C154945302 @default.
- W4307185979 hasConcept C164705383 @default.
- W4307185979 hasConcept C169258074 @default.
- W4307185979 hasConcept C31972630 @default.
- W4307185979 hasConcept C33923547 @default.
- W4307185979 hasConcept C38652104 @default.
- W4307185979 hasConcept C41008148 @default.
- W4307185979 hasConcept C48921125 @default.
- W4307185979 hasConcept C71924100 @default.
- W4307185979 hasConcept C84393581 @default.
- W4307185979 hasConceptScore W4307185979C106131492 @default.
- W4307185979 hasConceptScore W4307185979C116390426 @default.
- W4307185979 hasConceptScore W4307185979C119857082 @default.
- W4307185979 hasConceptScore W4307185979C126322002 @default.
- W4307185979 hasConceptScore W4307185979C13852961 @default.
- W4307185979 hasConceptScore W4307185979C153180895 @default.
- W4307185979 hasConceptScore W4307185979C154945302 @default.
- W4307185979 hasConceptScore W4307185979C164705383 @default.
- W4307185979 hasConceptScore W4307185979C169258074 @default.
- W4307185979 hasConceptScore W4307185979C31972630 @default.
- W4307185979 hasConceptScore W4307185979C33923547 @default.
- W4307185979 hasConceptScore W4307185979C38652104 @default.
- W4307185979 hasConceptScore W4307185979C41008148 @default.
- W4307185979 hasConceptScore W4307185979C48921125 @default.
- W4307185979 hasConceptScore W4307185979C71924100 @default.
- W4307185979 hasConceptScore W4307185979C84393581 @default.
- W4307185979 hasLocation W43071859791 @default.
- W4307185979 hasLocation W43071859792 @default.
- W4307185979 hasOpenAccess W4307185979 @default.
- W4307185979 hasPrimaryLocation W43071859791 @default.
- W4307185979 hasRelatedWork W1968279762 @default.
- W4307185979 hasRelatedWork W1994871954 @default.
- W4307185979 hasRelatedWork W2072858761 @default.
- W4307185979 hasRelatedWork W2122132874 @default.
- W4307185979 hasRelatedWork W2170552210 @default.
- W4307185979 hasRelatedWork W2732360296 @default.
- W4307185979 hasRelatedWork W4200107443 @default.
- W4307185979 hasRelatedWork W4206678752 @default.
- W4307185979 hasRelatedWork W4239033438 @default.
- W4307185979 hasRelatedWork W4297152434 @default.
- W4307185979 isParatext "false" @default.
- W4307185979 isRetracted "false" @default.
- W4307185979 workType "article" @default.