Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307190090> ?p ?o ?g. }
- W4307190090 endingPage "1517" @default.
- W4307190090 startingPage "1517" @default.
- W4307190090 abstract "This paper proposes a novel fault diagnosis method for rolling bearing based on hierarchical refined composite multiscale fluctuation-based dispersion entropy (HRCMFDE) and particle swarm optimization-based extreme learning machine (PSO-ELM). First, HRCMFDE is used to extract fault features in the vibration signal at different time scales. By introducing the hierarchical theory algorithm into the vibration signal decomposition process, the problem of missing high-frequency signals in the coarse-grained process is solved. Fluctuation-based dispersion entropy (FDE) has the characteristics of insensitivity to noise interference and high computational efficiency based on the consideration of nonlinear time series fluctuations, which makes the extracted feature vectors more effective in describing the fault information embedded in each frequency band of the vibration signal. Then, PSO is used to optimize the input weights and hidden layer neuron thresholds of the ELM model to improve the fault identification capability of the ELM classifier. Finally, the performance of the proposed rolling bearing fault diagnosis method is verified and analyzed by using the CWRU dataset and MFPT dataset as experimental cases, respectively. The results show that the proposed method has high identification accuracy for the fault diagnosis of rolling bearings with varying loads and has a good load migration effect." @default.
- W4307190090 created "2022-10-29" @default.
- W4307190090 creator A5010771726 @default.
- W4307190090 creator A5022556620 @default.
- W4307190090 creator A5045958583 @default.
- W4307190090 creator A5078540480 @default.
- W4307190090 date "2022-10-24" @default.
- W4307190090 modified "2023-10-14" @default.
- W4307190090 title "A Novel Fault Diagnosis Method for Rolling Bearing Based on Hierarchical Refined Composite Multiscale Fluctuation-Based Dispersion Entropy and PSO-ELM" @default.
- W4307190090 cites W1862394037 @default.
- W4307190090 cites W1971219721 @default.
- W4307190090 cites W1978959816 @default.
- W4307190090 cites W1991941961 @default.
- W4307190090 cites W1995875735 @default.
- W4307190090 cites W2003205626 @default.
- W4307190090 cites W2014683958 @default.
- W4307190090 cites W2026131661 @default.
- W4307190090 cites W2026471620 @default.
- W4307190090 cites W2031377725 @default.
- W4307190090 cites W2047094503 @default.
- W4307190090 cites W2071438989 @default.
- W4307190090 cites W2077770566 @default.
- W4307190090 cites W2109881441 @default.
- W4307190090 cites W2111072639 @default.
- W4307190090 cites W2230524333 @default.
- W4307190090 cites W2280719928 @default.
- W4307190090 cites W2296077894 @default.
- W4307190090 cites W2333775360 @default.
- W4307190090 cites W2464878551 @default.
- W4307190090 cites W2518276747 @default.
- W4307190090 cites W2570991997 @default.
- W4307190090 cites W2735179615 @default.
- W4307190090 cites W2791694051 @default.
- W4307190090 cites W2792354770 @default.
- W4307190090 cites W2804103614 @default.
- W4307190090 cites W2809350318 @default.
- W4307190090 cites W2900338824 @default.
- W4307190090 cites W2903052680 @default.
- W4307190090 cites W2905281262 @default.
- W4307190090 cites W2915229515 @default.
- W4307190090 cites W2917255080 @default.
- W4307190090 cites W2922085371 @default.
- W4307190090 cites W2929433786 @default.
- W4307190090 cites W2944095229 @default.
- W4307190090 cites W2949808003 @default.
- W4307190090 cites W2971894154 @default.
- W4307190090 cites W2981169003 @default.
- W4307190090 cites W2987581600 @default.
- W4307190090 cites W2998970859 @default.
- W4307190090 cites W3002014232 @default.
- W4307190090 cites W3013933127 @default.
- W4307190090 cites W3027524720 @default.
- W4307190090 cites W3038822438 @default.
- W4307190090 cites W3043419586 @default.
- W4307190090 cites W3045546070 @default.
- W4307190090 cites W3070925597 @default.
- W4307190090 cites W3093592106 @default.
- W4307190090 cites W3117055840 @default.
- W4307190090 cites W3148636265 @default.
- W4307190090 cites W3169347762 @default.
- W4307190090 cites W3181476720 @default.
- W4307190090 cites W3182594420 @default.
- W4307190090 cites W3202654197 @default.
- W4307190090 cites W4281390884 @default.
- W4307190090 cites W4283770904 @default.
- W4307190090 doi "https://doi.org/10.3390/e24111517" @default.
- W4307190090 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36359611" @default.
- W4307190090 hasPublicationYear "2022" @default.
- W4307190090 type Work @default.
- W4307190090 citedByCount "4" @default.
- W4307190090 countsByYear W43071900902023 @default.
- W4307190090 crossrefType "journal-article" @default.
- W4307190090 hasAuthorship W4307190090A5010771726 @default.
- W4307190090 hasAuthorship W4307190090A5022556620 @default.
- W4307190090 hasAuthorship W4307190090A5045958583 @default.
- W4307190090 hasAuthorship W4307190090A5078540480 @default.
- W4307190090 hasBestOaLocation W43071900901 @default.
- W4307190090 hasConcept C106301342 @default.
- W4307190090 hasConcept C11413529 @default.
- W4307190090 hasConcept C121332964 @default.
- W4307190090 hasConcept C127313418 @default.
- W4307190090 hasConcept C153180895 @default.
- W4307190090 hasConcept C154945302 @default.
- W4307190090 hasConcept C165205528 @default.
- W4307190090 hasConcept C175551986 @default.
- W4307190090 hasConcept C198394728 @default.
- W4307190090 hasConcept C199978012 @default.
- W4307190090 hasConcept C24890656 @default.
- W4307190090 hasConcept C2775924081 @default.
- W4307190090 hasConcept C2780150128 @default.
- W4307190090 hasConcept C41008148 @default.
- W4307190090 hasConcept C47446073 @default.
- W4307190090 hasConcept C50644808 @default.
- W4307190090 hasConcept C62520636 @default.
- W4307190090 hasConcept C85617194 @default.
- W4307190090 hasConceptScore W4307190090C106301342 @default.
- W4307190090 hasConceptScore W4307190090C11413529 @default.
- W4307190090 hasConceptScore W4307190090C121332964 @default.