Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307216059> ?p ?o ?g. }
- W4307216059 endingPage "3457" @default.
- W4307216059 startingPage "3457" @default.
- W4307216059 abstract "Brain tumor (BTs) is considered one of the deadly, destructive, and belligerent disease, that shortens the average life span of patients. Patients with misdiagnosed and insufficient medical treatment of BTs have less chance of survival. For tumor analysis, magnetic resonance imaging (MRI) is often utilized. However, due to the vast data produced by MRI, manual segmentation in a reasonable period of time is difficult, which limits the application of standard criteria in clinical practice. So, efficient and automated segmentation techniques are required. The accurate early detection and segmentation of BTs is a difficult and challenging task in biomedical imaging. Automated segmentation is an issue because of the considerable temporal and anatomical variability of brain tumors. Early detection and treatment are therefore essential. To detect brain cancers or tumors, different classical machine learning (ML) algorithms have been utilized. However, the main difficulty with these models is the manually extracted features. This research provides a deep hybrid learning (DeepTumorNetwork) model of binary BTs classification and overcomes the above-mentioned problems. The proposed method hybrid GoogLeNet architecture with a CNN model by eliminating the 5 layers of GoogLeNet and adding 14 layers of the CNN model that extracts features automatically. On the same Kaggle (Br35H) dataset, the proposed model key performance indicator was compared to transfer learning (TL) model (ResNet, VGG-16, SqeezNet, AlexNet, MobileNet V2) and different ML/DL. Furthermore, the proposed approach outperformed based on a key performance indicator (Acc, Recall, Precision, and F1-Score) of BTs classification. Additionally, the proposed methods exhibited high classification performance measures, Accuracy (99.51%), Precision (99%), Recall (98.90%), and F1-Score (98.50%). The proposed approaches show its superiority on recent sibling methods for BTs classification. The proposed method outperformed current methods for BTs classification using MRI images." @default.
- W4307216059 created "2022-10-30" @default.
- W4307216059 creator A5005764434 @default.
- W4307216059 creator A5031928743 @default.
- W4307216059 creator A5043393776 @default.
- W4307216059 creator A5059209694 @default.
- W4307216059 creator A5061290116 @default.
- W4307216059 creator A5066565703 @default.
- W4307216059 creator A5080972827 @default.
- W4307216059 creator A5081689472 @default.
- W4307216059 date "2022-10-25" @default.
- W4307216059 modified "2023-10-18" @default.
- W4307216059 title "Brain Tumor Classification and Detection Using Hybrid Deep Tumor Network" @default.
- W4307216059 cites W1999065088 @default.
- W4307216059 cites W2161549499 @default.
- W4307216059 cites W2203956467 @default.
- W4307216059 cites W2341890933 @default.
- W4307216059 cites W2366536035 @default.
- W4307216059 cites W2549070790 @default.
- W4307216059 cites W2785673949 @default.
- W4307216059 cites W2788923878 @default.
- W4307216059 cites W2897188827 @default.
- W4307216059 cites W2913144232 @default.
- W4307216059 cites W2945839551 @default.
- W4307216059 cites W2966076645 @default.
- W4307216059 cites W2972838422 @default.
- W4307216059 cites W2995864059 @default.
- W4307216059 cites W3023828269 @default.
- W4307216059 cites W3034436104 @default.
- W4307216059 cites W3035036961 @default.
- W4307216059 cites W3035403188 @default.
- W4307216059 cites W3084741591 @default.
- W4307216059 cites W3087969957 @default.
- W4307216059 cites W3105078060 @default.
- W4307216059 cites W3114726686 @default.
- W4307216059 cites W3153976453 @default.
- W4307216059 cites W3156052130 @default.
- W4307216059 cites W3165957853 @default.
- W4307216059 cites W3173715043 @default.
- W4307216059 cites W3184839167 @default.
- W4307216059 cites W3187020955 @default.
- W4307216059 cites W3195143297 @default.
- W4307216059 cites W3211740276 @default.
- W4307216059 cites W4210485550 @default.
- W4307216059 cites W4226313662 @default.
- W4307216059 cites W4255289481 @default.
- W4307216059 cites W4281730279 @default.
- W4307216059 cites W4283065622 @default.
- W4307216059 cites W4283217173 @default.
- W4307216059 cites W4283330963 @default.
- W4307216059 cites W4283526075 @default.
- W4307216059 cites W4285049420 @default.
- W4307216059 cites W4288060649 @default.
- W4307216059 cites W4291511624 @default.
- W4307216059 cites W4293598190 @default.
- W4307216059 cites W4294833989 @default.
- W4307216059 doi "https://doi.org/10.3390/electronics11213457" @default.
- W4307216059 hasPublicationYear "2022" @default.
- W4307216059 type Work @default.
- W4307216059 citedByCount "6" @default.
- W4307216059 countsByYear W43072160592023 @default.
- W4307216059 crossrefType "journal-article" @default.
- W4307216059 hasAuthorship W4307216059A5005764434 @default.
- W4307216059 hasAuthorship W4307216059A5031928743 @default.
- W4307216059 hasAuthorship W4307216059A5043393776 @default.
- W4307216059 hasAuthorship W4307216059A5059209694 @default.
- W4307216059 hasAuthorship W4307216059A5061290116 @default.
- W4307216059 hasAuthorship W4307216059A5066565703 @default.
- W4307216059 hasAuthorship W4307216059A5080972827 @default.
- W4307216059 hasAuthorship W4307216059A5081689472 @default.
- W4307216059 hasBestOaLocation W43072160591 @default.
- W4307216059 hasConcept C108583219 @default.
- W4307216059 hasConcept C119857082 @default.
- W4307216059 hasConcept C12267149 @default.
- W4307216059 hasConcept C148524875 @default.
- W4307216059 hasConcept C150899416 @default.
- W4307216059 hasConcept C153180895 @default.
- W4307216059 hasConcept C154945302 @default.
- W4307216059 hasConcept C26517878 @default.
- W4307216059 hasConcept C31601959 @default.
- W4307216059 hasConcept C38652104 @default.
- W4307216059 hasConcept C41008148 @default.
- W4307216059 hasConcept C66905080 @default.
- W4307216059 hasConcept C89600930 @default.
- W4307216059 hasConceptScore W4307216059C108583219 @default.
- W4307216059 hasConceptScore W4307216059C119857082 @default.
- W4307216059 hasConceptScore W4307216059C12267149 @default.
- W4307216059 hasConceptScore W4307216059C148524875 @default.
- W4307216059 hasConceptScore W4307216059C150899416 @default.
- W4307216059 hasConceptScore W4307216059C153180895 @default.
- W4307216059 hasConceptScore W4307216059C154945302 @default.
- W4307216059 hasConceptScore W4307216059C26517878 @default.
- W4307216059 hasConceptScore W4307216059C31601959 @default.
- W4307216059 hasConceptScore W4307216059C38652104 @default.
- W4307216059 hasConceptScore W4307216059C41008148 @default.
- W4307216059 hasConceptScore W4307216059C66905080 @default.
- W4307216059 hasConceptScore W4307216059C89600930 @default.
- W4307216059 hasIssue "21" @default.