Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307231856> ?p ?o ?g. }
- W4307231856 endingPage "632" @default.
- W4307231856 startingPage "619" @default.
- W4307231856 abstract "The lesion recognition of dermoscopy images is significant for automated skin cancer diagnosis. Most of the existing methods ignore the medical perspective, which is crucial since this task requires a large amount of medical knowledge. A few methods are designed according to medical knowledge, but they ignore to be fully in line with doctors’ entire learning and diagnosis process, since certain strategies and steps of those are conducted in practice for doctors. Thus, we put forward Clinical-Inspired Network (CI-Net) to involve the learning strategy and diagnosis process of doctors, as for a better analysis. The diagnostic process contains three main steps: the zoom step, the observe step and the compare step. To simulate these, we introduce three corresponding modules: a lesion area attention module, a feature extraction module and a lesion feature attention module. To simulate the distinguish strategy, which is commonly used by doctors, we introduce a distinguish module. We evaluate our proposed CI-Net on six challenging datasets, including ISIC 2016, ISIC 2017, ISIC 2018, ISIC 2019, ISIC 2020 and PH2 datasets, and the results indicate that CI-Net outperforms existing work. The code is publicly available at <uri xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>https://github.com/lzh19961031/Dermoscopy_classification</uri> ." @default.
- W4307231856 created "2022-10-30" @default.
- W4307231856 creator A5003718473 @default.
- W4307231856 creator A5013727612 @default.
- W4307231856 creator A5081555196 @default.
- W4307231856 date "2023-03-01" @default.
- W4307231856 modified "2023-09-30" @default.
- W4307231856 title "CI-Net: Clinical-Inspired Network for Automated Skin Lesion Recognition" @default.
- W4307231856 cites W1480009832 @default.
- W4307231856 cites W1496650988 @default.
- W4307231856 cites W1814305738 @default.
- W4307231856 cites W1992455269 @default.
- W4307231856 cites W2009671025 @default.
- W4307231856 cites W2040600853 @default.
- W4307231856 cites W2061576204 @default.
- W4307231856 cites W2077307030 @default.
- W4307231856 cites W2162515926 @default.
- W4307231856 cites W2164273268 @default.
- W4307231856 cites W2170552969 @default.
- W4307231856 cites W2194775991 @default.
- W4307231856 cites W2235523093 @default.
- W4307231856 cites W2293474310 @default.
- W4307231856 cites W2564782580 @default.
- W4307231856 cites W2607620597 @default.
- W4307231856 cites W2701556738 @default.
- W4307231856 cites W2751686900 @default.
- W4307231856 cites W2752782242 @default.
- W4307231856 cites W2797527544 @default.
- W4307231856 cites W2798277818 @default.
- W4307231856 cites W2884585870 @default.
- W4307231856 cites W2888442043 @default.
- W4307231856 cites W2890599568 @default.
- W4307231856 cites W2898260903 @default.
- W4307231856 cites W2914959431 @default.
- W4307231856 cites W2916845318 @default.
- W4307231856 cites W2922510944 @default.
- W4307231856 cites W2957352479 @default.
- W4307231856 cites W2961639225 @default.
- W4307231856 cites W2963446712 @default.
- W4307231856 cites W2963946669 @default.
- W4307231856 cites W3006349040 @default.
- W4307231856 cites W3008320599 @default.
- W4307231856 cites W3024889886 @default.
- W4307231856 cites W3028742747 @default.
- W4307231856 cites W3035311832 @default.
- W4307231856 cites W3037436903 @default.
- W4307231856 cites W3091456580 @default.
- W4307231856 cites W3102638969 @default.
- W4307231856 cites W3120505984 @default.
- W4307231856 cites W3128797821 @default.
- W4307231856 cites W3136200549 @default.
- W4307231856 cites W3147142721 @default.
- W4307231856 cites W3158307528 @default.
- W4307231856 cites W3159263575 @default.
- W4307231856 cites W3192610404 @default.
- W4307231856 cites W3196396697 @default.
- W4307231856 cites W3203430125 @default.
- W4307231856 cites W3204178249 @default.
- W4307231856 cites W3206316397 @default.
- W4307231856 cites W4200525003 @default.
- W4307231856 doi "https://doi.org/10.1109/tmi.2022.3215547" @default.
- W4307231856 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36279355" @default.
- W4307231856 hasPublicationYear "2023" @default.
- W4307231856 type Work @default.
- W4307231856 citedByCount "3" @default.
- W4307231856 countsByYear W43072318562023 @default.
- W4307231856 crossrefType "journal-article" @default.
- W4307231856 hasAuthorship W4307231856A5003718473 @default.
- W4307231856 hasAuthorship W4307231856A5013727612 @default.
- W4307231856 hasAuthorship W4307231856A5081555196 @default.
- W4307231856 hasConcept C111919701 @default.
- W4307231856 hasConcept C119857082 @default.
- W4307231856 hasConcept C124913957 @default.
- W4307231856 hasConcept C127413603 @default.
- W4307231856 hasConcept C138885662 @default.
- W4307231856 hasConcept C142724271 @default.
- W4307231856 hasConcept C153180895 @default.
- W4307231856 hasConcept C15336307 @default.
- W4307231856 hasConcept C154945302 @default.
- W4307231856 hasConcept C162324750 @default.
- W4307231856 hasConcept C177264268 @default.
- W4307231856 hasConcept C187736073 @default.
- W4307231856 hasConcept C199360897 @default.
- W4307231856 hasConcept C2776401178 @default.
- W4307231856 hasConcept C2776760102 @default.
- W4307231856 hasConcept C2780451532 @default.
- W4307231856 hasConcept C2988168687 @default.
- W4307231856 hasConcept C41008148 @default.
- W4307231856 hasConcept C41895202 @default.
- W4307231856 hasConcept C52622490 @default.
- W4307231856 hasConcept C71924100 @default.
- W4307231856 hasConcept C78762247 @default.
- W4307231856 hasConcept C98045186 @default.
- W4307231856 hasConceptScore W4307231856C111919701 @default.
- W4307231856 hasConceptScore W4307231856C119857082 @default.
- W4307231856 hasConceptScore W4307231856C124913957 @default.
- W4307231856 hasConceptScore W4307231856C127413603 @default.
- W4307231856 hasConceptScore W4307231856C138885662 @default.