Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307270553> ?p ?o ?g. }
- W4307270553 endingPage "534" @default.
- W4307270553 startingPage "534" @default.
- W4307270553 abstract "Amazonas is a mountain region in Peru with high cloud cover, so using optical data in the analysis of surface changes of water bodies (such as the Burlan and Pomacochas lakes in Peru) is difficult, on the other hand, SAR images are suitable for the extraction of water bodies and delineation of contours. Therefore, in this research, to determine the surface changes of Burlan and Pomacochas lakes, we used Sentinel-1 A/B products to analyse the dynamics from 2014 to 2020, in addition to evaluating the procedure we performed a photogrammetric flight and compared the shapes and geometric attributes from each lake. For this, in Google Earth Engine (GEE), we processed 517 SAR images for each lake using the following algorithms: a classification and regression tree (CART), Random Forest (RF) and support vector machine (SVM).) 2021-02-10, then; the same value was validated by comparing the area and perimeter values obtained from a photogrammetric flight, and the classification of a SAR image of the same date. During the first months of the year, there were slight increases in the area and perimeter of each lake, influenced by the increase in rainfall in the area. CART and Random Forest obtained better results for image classification, and for regression analysis, Support Vector Regression (SVR) and Random Forest Regression (RFR) were a better fit to the data (higher R2), for Burlan and Pomacochas lakes, respectively. The shape of the lakes obtained by classification was similar to that of the photogrammetric flight. For 2021-02-10, for Burlan Lake, all 3 classifiers had area values between 42.48 and 43.53, RFR 44.47 and RPAS 45.63 hectares. For Pomacohas Lake, the 3 classifiers had area values between 414.23 and 434.89, SVR 411.89 and RPAS 429.09 hectares. Ultimately, we seek to provide a rapid methodology to classify SAR images into two categories and thus obtain the shape of water bodies and analyze their changes over short periods. A methodological scheme is also provided to perform a regression analysis in GC using five methods that can be replicated in different thematic areas." @default.
- W4307270553 created "2022-10-31" @default.
- W4307270553 creator A5011073481 @default.
- W4307270553 creator A5027806255 @default.
- W4307270553 creator A5042201001 @default.
- W4307270553 creator A5043706480 @default.
- W4307270553 creator A5046168998 @default.
- W4307270553 date "2022-10-24" @default.
- W4307270553 modified "2023-10-16" @default.
- W4307270553 title "Dynamics of the Burlan and Pomacochas Lakes Using SAR Data in GEE, Machine Learning Classifiers, and Regression Methods" @default.
- W4307270553 cites W1591601939 @default.
- W4307270553 cites W1605498756 @default.
- W4307270553 cites W1975846642 @default.
- W4307270553 cites W1976193075 @default.
- W4307270553 cites W2022947185 @default.
- W4307270553 cites W2035994869 @default.
- W4307270553 cites W2036159872 @default.
- W4307270553 cites W2046404534 @default.
- W4307270553 cites W2079299474 @default.
- W4307270553 cites W2081140230 @default.
- W4307270553 cites W2082374526 @default.
- W4307270553 cites W2088890756 @default.
- W4307270553 cites W2094801462 @default.
- W4307270553 cites W2131822674 @default.
- W4307270553 cites W2139212933 @default.
- W4307270553 cites W2168746820 @default.
- W4307270553 cites W2182214061 @default.
- W4307270553 cites W2212574864 @default.
- W4307270553 cites W2281658227 @default.
- W4307270553 cites W2564545777 @default.
- W4307270553 cites W2611387561 @default.
- W4307270553 cites W2725897987 @default.
- W4307270553 cites W2752783768 @default.
- W4307270553 cites W2752983793 @default.
- W4307270553 cites W2793091350 @default.
- W4307270553 cites W2808450759 @default.
- W4307270553 cites W2891336572 @default.
- W4307270553 cites W2909299801 @default.
- W4307270553 cites W2911964244 @default.
- W4307270553 cites W2950493522 @default.
- W4307270553 cites W2984890600 @default.
- W4307270553 cites W2985851361 @default.
- W4307270553 cites W2990859939 @default.
- W4307270553 cites W2998658835 @default.
- W4307270553 cites W3011128151 @default.
- W4307270553 cites W3023058341 @default.
- W4307270553 cites W3088073951 @default.
- W4307270553 cites W3120044922 @default.
- W4307270553 cites W4212883601 @default.
- W4307270553 cites W4241210177 @default.
- W4307270553 doi "https://doi.org/10.3390/ijgi11110534" @default.
- W4307270553 hasPublicationYear "2022" @default.
- W4307270553 type Work @default.
- W4307270553 citedByCount "1" @default.
- W4307270553 countsByYear W43072705532023 @default.
- W4307270553 crossrefType "journal-article" @default.
- W4307270553 hasAuthorship W4307270553A5011073481 @default.
- W4307270553 hasAuthorship W4307270553A5027806255 @default.
- W4307270553 hasAuthorship W4307270553A5042201001 @default.
- W4307270553 hasAuthorship W4307270553A5043706480 @default.
- W4307270553 hasAuthorship W4307270553A5046168998 @default.
- W4307270553 hasBestOaLocation W43072705531 @default.
- W4307270553 hasConcept C105795698 @default.
- W4307270553 hasConcept C117455697 @default.
- W4307270553 hasConcept C119857082 @default.
- W4307270553 hasConcept C12267149 @default.
- W4307270553 hasConcept C152877465 @default.
- W4307270553 hasConcept C154945302 @default.
- W4307270553 hasConcept C166957645 @default.
- W4307270553 hasConcept C169258074 @default.
- W4307270553 hasConcept C205649164 @default.
- W4307270553 hasConcept C2777275308 @default.
- W4307270553 hasConcept C33923547 @default.
- W4307270553 hasConcept C39432304 @default.
- W4307270553 hasConcept C41008148 @default.
- W4307270553 hasConcept C62649853 @default.
- W4307270553 hasConcept C83546350 @default.
- W4307270553 hasConcept C84525736 @default.
- W4307270553 hasConceptScore W4307270553C105795698 @default.
- W4307270553 hasConceptScore W4307270553C117455697 @default.
- W4307270553 hasConceptScore W4307270553C119857082 @default.
- W4307270553 hasConceptScore W4307270553C12267149 @default.
- W4307270553 hasConceptScore W4307270553C152877465 @default.
- W4307270553 hasConceptScore W4307270553C154945302 @default.
- W4307270553 hasConceptScore W4307270553C166957645 @default.
- W4307270553 hasConceptScore W4307270553C169258074 @default.
- W4307270553 hasConceptScore W4307270553C205649164 @default.
- W4307270553 hasConceptScore W4307270553C2777275308 @default.
- W4307270553 hasConceptScore W4307270553C33923547 @default.
- W4307270553 hasConceptScore W4307270553C39432304 @default.
- W4307270553 hasConceptScore W4307270553C41008148 @default.
- W4307270553 hasConceptScore W4307270553C62649853 @default.
- W4307270553 hasConceptScore W4307270553C83546350 @default.
- W4307270553 hasConceptScore W4307270553C84525736 @default.
- W4307270553 hasIssue "11" @default.
- W4307270553 hasLocation W43072705531 @default.
- W4307270553 hasOpenAccess W4307270553 @default.
- W4307270553 hasPrimaryLocation W43072705531 @default.