Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307291337> ?p ?o ?g. }
- W4307291337 endingPage "5358" @default.
- W4307291337 startingPage "5358" @default.
- W4307291337 abstract "Sea surface salinity (SSS) is one of the most important basic parameters for studying the oceanographic processes and is of great significance in identifying oceanic currents. However, for a long time, the salinity observation in the estuary and coastal waters has not been well resolved due to the technology limitation. In this study, the SSS inversion models for the Changjiang Estuary and the adjacent sea waters were established based on machine learning methods, using SMAP (Soil Moisture Active and Passive) salinity data combined with the specific bands and bands ratios of MODIS (Moderate Resolution Imaging Spectroradiometer). The performance of the three machine learning methods (Random Forest, Particle Swarm Optimization Support Vector Regression (PSO-SVR) and Automatic Machine Learning (TPOT)) are compared with accuracy verification by the in-situ measured SSS. Random Forest is proven to be effective for the SSS inversion in flood season, whereas TPOP performs the best for the dry season. The machine learning-based models effectively solve the problem of insufficient time span of SSS observation from salinity satellites. At the same time, an empirical algorithm was established for the SSS inversion for the sea areas with low salinity (<30 psu) where the machine learning based model fails with great errors. The average deviation of the complex SSS inversion models is −0.86 psu, validated with Copernicus Global Ocean Reanalysis Data. The long term series SSS dataset of March and August from 2003 to 2020 was then constructed to observe the salinity distribution characteristics of the flood season and the dry season, respectively. It is indicated that the distribution pattern of CDW can be divided into three categories: northeast-oriented expansion pattern, multi direction isotropic expansion pattern, and a turn pattern of which CDW shows changing direction, namely the northeast-southeast expansion pattern. The pattern of CDW expansion is indicated to be the comprehensive effect of the interaction of different currents. In addition, it is noteworthy that CDW shows increasing expansion with decreasing SSS in the front plume, especially in the flood season. This study not only gives a feasible solution for effective SSS observation, but also provides a dataset of basic oceanographic parameters for studying the coastal biogeochemical processes, evolution of land-sea interaction, and changing trend of material and energy transport by the CDW in the west Pacific boundary." @default.
- W4307291337 created "2022-10-31" @default.
- W4307291337 creator A5010234425 @default.
- W4307291337 creator A5011724449 @default.
- W4307291337 creator A5033178355 @default.
- W4307291337 creator A5048589020 @default.
- W4307291337 creator A5054835275 @default.
- W4307291337 creator A5063880073 @default.
- W4307291337 date "2022-10-26" @default.
- W4307291337 modified "2023-09-30" @default.
- W4307291337 title "Sea Surface Salinity Inversion Model for Changjiang Estuary and Adjoining Sea Area with SMAP and MODIS Data Based on Machine Learning and Preliminary Application" @default.
- W4307291337 cites W1533101389 @default.
- W4307291337 cites W1786686177 @default.
- W4307291337 cites W1964357740 @default.
- W4307291337 cites W1964940342 @default.
- W4307291337 cites W1981721600 @default.
- W4307291337 cites W1990057752 @default.
- W4307291337 cites W1990186507 @default.
- W4307291337 cites W1990790504 @default.
- W4307291337 cites W2000288649 @default.
- W4307291337 cites W2012749754 @default.
- W4307291337 cites W2018764772 @default.
- W4307291337 cites W2019788555 @default.
- W4307291337 cites W2022506294 @default.
- W4307291337 cites W2039049700 @default.
- W4307291337 cites W2039348932 @default.
- W4307291337 cites W2060553392 @default.
- W4307291337 cites W2071491673 @default.
- W4307291337 cites W2076945820 @default.
- W4307291337 cites W2078265825 @default.
- W4307291337 cites W2084882665 @default.
- W4307291337 cites W2103293707 @default.
- W4307291337 cites W2104561031 @default.
- W4307291337 cites W2114803046 @default.
- W4307291337 cites W2116689721 @default.
- W4307291337 cites W2135403967 @default.
- W4307291337 cites W2141219203 @default.
- W4307291337 cites W2146705192 @default.
- W4307291337 cites W2156909104 @default.
- W4307291337 cites W2157494358 @default.
- W4307291337 cites W2164637610 @default.
- W4307291337 cites W2164873977 @default.
- W4307291337 cites W2168016992 @default.
- W4307291337 cites W2171925893 @default.
- W4307291337 cites W2172000864 @default.
- W4307291337 cites W2216946510 @default.
- W4307291337 cites W2483120540 @default.
- W4307291337 cites W2518949820 @default.
- W4307291337 cites W2524622942 @default.
- W4307291337 cites W2789750610 @default.
- W4307291337 cites W2900888442 @default.
- W4307291337 cites W2947123069 @default.
- W4307291337 cites W3015341207 @default.
- W4307291337 cites W3021091770 @default.
- W4307291337 cites W3128123704 @default.
- W4307291337 cites W3163786924 @default.
- W4307291337 cites W3199545470 @default.
- W4307291337 cites W4239510810 @default.
- W4307291337 doi "https://doi.org/10.3390/rs14215358" @default.
- W4307291337 hasPublicationYear "2022" @default.
- W4307291337 type Work @default.
- W4307291337 citedByCount "0" @default.
- W4307291337 crossrefType "journal-article" @default.
- W4307291337 hasAuthorship W4307291337A5010234425 @default.
- W4307291337 hasAuthorship W4307291337A5011724449 @default.
- W4307291337 hasAuthorship W4307291337A5033178355 @default.
- W4307291337 hasAuthorship W4307291337A5048589020 @default.
- W4307291337 hasAuthorship W4307291337A5054835275 @default.
- W4307291337 hasAuthorship W4307291337A5063880073 @default.
- W4307291337 hasBestOaLocation W43072913371 @default.
- W4307291337 hasConcept C109007969 @default.
- W4307291337 hasConcept C111368507 @default.
- W4307291337 hasConcept C11413529 @default.
- W4307291337 hasConcept C119857082 @default.
- W4307291337 hasConcept C12267149 @default.
- W4307291337 hasConcept C127313418 @default.
- W4307291337 hasConcept C127413603 @default.
- W4307291337 hasConcept C129513315 @default.
- W4307291337 hasConcept C134097258 @default.
- W4307291337 hasConcept C146978453 @default.
- W4307291337 hasConcept C148699463 @default.
- W4307291337 hasConcept C151730666 @default.
- W4307291337 hasConcept C153294291 @default.
- W4307291337 hasConcept C154945302 @default.
- W4307291337 hasConcept C1893757 @default.
- W4307291337 hasConcept C19269812 @default.
- W4307291337 hasConcept C205649164 @default.
- W4307291337 hasConcept C2777007095 @default.
- W4307291337 hasConcept C39432304 @default.
- W4307291337 hasConcept C41008148 @default.
- W4307291337 hasConcept C49204034 @default.
- W4307291337 hasConcept C62649853 @default.
- W4307291337 hasConcept C88160329 @default.
- W4307291337 hasConceptScore W4307291337C109007969 @default.
- W4307291337 hasConceptScore W4307291337C111368507 @default.
- W4307291337 hasConceptScore W4307291337C11413529 @default.
- W4307291337 hasConceptScore W4307291337C119857082 @default.
- W4307291337 hasConceptScore W4307291337C12267149 @default.