Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307295673> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4307295673 endingPage "120124" @default.
- W4307295673 startingPage "120124" @default.
- W4307295673 abstract "From the perspective of electricity distribution networks and the energy system, the increasing numbers of electric vehicles are among the most topical and challenging problems. The paper investigates a novel approach of a convolutional neural network-based modeling method for estimating the spatial distribution of electric vehicles. The proposed model extracts features from multilayer socioeconomic input raster data that are sequenced in strides and outputs a spatial estimation of EV distribution. Spatial forecasting or area forecasting is at the core of the distribution system operators’ planning and development process as it provides a solid foundation for stochastic load modeling and load development analysis. Present models mostly focus on stochastic load modeling, lacking the spatial forecasting aspect of EV distribution. The proposed model aims to enhance EV load modeling by providing a more accurate spatial approach to the models. The study uses large actual socioeconomic and vehicle registration data sets to tackle the modeling challenge. In comparison with previous studies on similar topics, the present study benefits from more samples resulting from an increase in the adoption of electric vehicles. The proposed model architecture performs adequately in predicting a spatial electric vehicle distribution; the CNN model reached a weighted average precision score of 0.91. The proposed methodology greatly enhances stochastic EV load modeling by providing a good spatial forecast of the initial EV locations, and the results can be further aggregated to support the electricity distribution system planning process. An energy-, material-, and cost-efficient electricity distribution system is the backbone of the modern energy system." @default.
- W4307295673 created "2022-10-31" @default.
- W4307295673 creator A5036681720 @default.
- W4307295673 creator A5037248950 @default.
- W4307295673 creator A5049376408 @default.
- W4307295673 creator A5083664449 @default.
- W4307295673 date "2022-12-01" @default.
- W4307295673 modified "2023-09-26" @default.
- W4307295673 title "Convolutional neural networks in estimating the spatial distribution of electric vehicles to support electricity grid planning" @default.
- W4307295673 cites W1966669646 @default.
- W4307295673 cites W1990517717 @default.
- W4307295673 cites W2069363320 @default.
- W4307295673 cites W2328472985 @default.
- W4307295673 cites W2883200793 @default.
- W4307295673 cites W2916161298 @default.
- W4307295673 cites W3026891324 @default.
- W4307295673 cites W3039922070 @default.
- W4307295673 cites W3093609442 @default.
- W4307295673 cites W3100321043 @default.
- W4307295673 cites W3113224898 @default.
- W4307295673 cites W3115553521 @default.
- W4307295673 cites W3155261023 @default.
- W4307295673 cites W3155917939 @default.
- W4307295673 cites W3175519829 @default.
- W4307295673 cites W3217037671 @default.
- W4307295673 cites W4200180552 @default.
- W4307295673 cites W4200229872 @default.
- W4307295673 cites W4214572612 @default.
- W4307295673 cites W4221033844 @default.
- W4307295673 cites W4285082014 @default.
- W4307295673 doi "https://doi.org/10.1016/j.apenergy.2022.120124" @default.
- W4307295673 hasPublicationYear "2022" @default.
- W4307295673 type Work @default.
- W4307295673 citedByCount "0" @default.
- W4307295673 crossrefType "journal-article" @default.
- W4307295673 hasAuthorship W4307295673A5036681720 @default.
- W4307295673 hasAuthorship W4307295673A5037248950 @default.
- W4307295673 hasAuthorship W4307295673A5049376408 @default.
- W4307295673 hasAuthorship W4307295673A5083664449 @default.
- W4307295673 hasBestOaLocation W43072956731 @default.
- W4307295673 hasConcept C111919701 @default.
- W4307295673 hasConcept C119599485 @default.
- W4307295673 hasConcept C127413603 @default.
- W4307295673 hasConcept C187691185 @default.
- W4307295673 hasConcept C206658404 @default.
- W4307295673 hasConcept C2524010 @default.
- W4307295673 hasConcept C33923547 @default.
- W4307295673 hasConcept C41008148 @default.
- W4307295673 hasConcept C44154836 @default.
- W4307295673 hasConcept C98045186 @default.
- W4307295673 hasConceptScore W4307295673C111919701 @default.
- W4307295673 hasConceptScore W4307295673C119599485 @default.
- W4307295673 hasConceptScore W4307295673C127413603 @default.
- W4307295673 hasConceptScore W4307295673C187691185 @default.
- W4307295673 hasConceptScore W4307295673C206658404 @default.
- W4307295673 hasConceptScore W4307295673C2524010 @default.
- W4307295673 hasConceptScore W4307295673C33923547 @default.
- W4307295673 hasConceptScore W4307295673C41008148 @default.
- W4307295673 hasConceptScore W4307295673C44154836 @default.
- W4307295673 hasConceptScore W4307295673C98045186 @default.
- W4307295673 hasLocation W43072956731 @default.
- W4307295673 hasOpenAccess W4307295673 @default.
- W4307295673 hasPrimaryLocation W43072956731 @default.
- W4307295673 hasRelatedWork W129091060 @default.
- W4307295673 hasRelatedWork W2160425906 @default.
- W4307295673 hasRelatedWork W2348896848 @default.
- W4307295673 hasRelatedWork W2352349437 @default.
- W4307295673 hasRelatedWork W2353908621 @default.
- W4307295673 hasRelatedWork W2354568776 @default.
- W4307295673 hasRelatedWork W2380963126 @default.
- W4307295673 hasRelatedWork W2383503060 @default.
- W4307295673 hasRelatedWork W2389875415 @default.
- W4307295673 hasRelatedWork W1544908136 @default.
- W4307295673 hasVolume "328" @default.
- W4307295673 isParatext "false" @default.
- W4307295673 isRetracted "false" @default.
- W4307295673 workType "article" @default.