Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307296084> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4307296084 endingPage "105505" @default.
- W4307296084 startingPage "105505" @default.
- W4307296084 abstract "Aiming at the problem that it is hard to fully reflect the surface morphology of rock joints with a certain feature parameter, a joint roughness determination method based on deep learning of time–frequency spectrogram was proposed. Firstly, regarding the rock joint profile as a time series signal, the time–frequency spectrogram was drawn through the Short-Time Fourier Transform (STFT) to comprehensively characterize the undulation location and degree of joint, and describe the roughness feature information of the joint profile more clearly and accurately. Then, the deep convolutional neural network was combined to extract and learn the features of the time–frequency spectrogram, and the roughness coefficient of the rock joint profile was identified, which effectively recovered the deficiency of the traditional artificial formulation feature parameters. The experimental results showed that compared with the conventional empirical regression method and machine learning (ML) models, the identified joint roughness coefficient based on deep learning of the time–frequency spectrogram was more consistent with the true value, and the calculation results were more reasonable and reliable, with higher recognition accuracy and generalization ability. It verified the feasibility and effectiveness of deep learning technology in the field of rock joint roughness identification. Finally, the influence of the sampling interval in this method was analyzed, and it suggested that the sampling interval of this method should not be longer than 0.4 mm when evaluating the joint roughness with about 10 cm in length." @default.
- W4307296084 created "2022-10-31" @default.
- W4307296084 creator A5001472898 @default.
- W4307296084 creator A5006192588 @default.
- W4307296084 creator A5046420696 @default.
- W4307296084 creator A5078439889 @default.
- W4307296084 date "2023-01-01" @default.
- W4307296084 modified "2023-09-26" @default.
- W4307296084 title "Rock joint roughness determination method based on deep learning of time–frequency spectrogram" @default.
- W4307296084 cites W1600918697 @default.
- W4307296084 cites W1954073912 @default.
- W4307296084 cites W1977616767 @default.
- W4307296084 cites W1979508424 @default.
- W4307296084 cites W1984204910 @default.
- W4307296084 cites W1995019667 @default.
- W4307296084 cites W2000472224 @default.
- W4307296084 cites W2011244038 @default.
- W4307296084 cites W2015213402 @default.
- W4307296084 cites W2060456094 @default.
- W4307296084 cites W2107719822 @default.
- W4307296084 cites W2755234517 @default.
- W4307296084 cites W2768756158 @default.
- W4307296084 cites W2792985302 @default.
- W4307296084 cites W2902543057 @default.
- W4307296084 cites W2912428562 @default.
- W4307296084 cites W2979507862 @default.
- W4307296084 cites W3180739889 @default.
- W4307296084 cites W3211333123 @default.
- W4307296084 cites W4281252421 @default.
- W4307296084 doi "https://doi.org/10.1016/j.engappai.2022.105505" @default.
- W4307296084 hasPublicationYear "2023" @default.
- W4307296084 type Work @default.
- W4307296084 citedByCount "2" @default.
- W4307296084 countsByYear W43072960842023 @default.
- W4307296084 crossrefType "journal-article" @default.
- W4307296084 hasAuthorship W4307296084A5001472898 @default.
- W4307296084 hasAuthorship W4307296084A5006192588 @default.
- W4307296084 hasAuthorship W4307296084A5046420696 @default.
- W4307296084 hasAuthorship W4307296084A5078439889 @default.
- W4307296084 hasConcept C102519508 @default.
- W4307296084 hasConcept C106131492 @default.
- W4307296084 hasConcept C108583219 @default.
- W4307296084 hasConcept C127413603 @default.
- W4307296084 hasConcept C134306372 @default.
- W4307296084 hasConcept C138885662 @default.
- W4307296084 hasConcept C142433447 @default.
- W4307296084 hasConcept C153180895 @default.
- W4307296084 hasConcept C154945302 @default.
- W4307296084 hasConcept C166386157 @default.
- W4307296084 hasConcept C170154142 @default.
- W4307296084 hasConcept C18555067 @default.
- W4307296084 hasConcept C203024314 @default.
- W4307296084 hasConcept C2776401178 @default.
- W4307296084 hasConcept C31972630 @default.
- W4307296084 hasConcept C33923547 @default.
- W4307296084 hasConcept C41008148 @default.
- W4307296084 hasConcept C41895202 @default.
- W4307296084 hasConcept C45273575 @default.
- W4307296084 hasConcept C52622490 @default.
- W4307296084 hasConcept C81363708 @default.
- W4307296084 hasConceptScore W4307296084C102519508 @default.
- W4307296084 hasConceptScore W4307296084C106131492 @default.
- W4307296084 hasConceptScore W4307296084C108583219 @default.
- W4307296084 hasConceptScore W4307296084C127413603 @default.
- W4307296084 hasConceptScore W4307296084C134306372 @default.
- W4307296084 hasConceptScore W4307296084C138885662 @default.
- W4307296084 hasConceptScore W4307296084C142433447 @default.
- W4307296084 hasConceptScore W4307296084C153180895 @default.
- W4307296084 hasConceptScore W4307296084C154945302 @default.
- W4307296084 hasConceptScore W4307296084C166386157 @default.
- W4307296084 hasConceptScore W4307296084C170154142 @default.
- W4307296084 hasConceptScore W4307296084C18555067 @default.
- W4307296084 hasConceptScore W4307296084C203024314 @default.
- W4307296084 hasConceptScore W4307296084C2776401178 @default.
- W4307296084 hasConceptScore W4307296084C31972630 @default.
- W4307296084 hasConceptScore W4307296084C33923547 @default.
- W4307296084 hasConceptScore W4307296084C41008148 @default.
- W4307296084 hasConceptScore W4307296084C41895202 @default.
- W4307296084 hasConceptScore W4307296084C45273575 @default.
- W4307296084 hasConceptScore W4307296084C52622490 @default.
- W4307296084 hasConceptScore W4307296084C81363708 @default.
- W4307296084 hasLocation W43072960841 @default.
- W4307296084 hasOpenAccess W4307296084 @default.
- W4307296084 hasPrimaryLocation W43072960841 @default.
- W4307296084 hasRelatedWork W2059299633 @default.
- W4307296084 hasRelatedWork W2129331087 @default.
- W4307296084 hasRelatedWork W2279398222 @default.
- W4307296084 hasRelatedWork W2391648882 @default.
- W4307296084 hasRelatedWork W2738221750 @default.
- W4307296084 hasRelatedWork W2773120646 @default.
- W4307296084 hasRelatedWork W2936488316 @default.
- W4307296084 hasRelatedWork W3011074480 @default.
- W4307296084 hasRelatedWork W3156786002 @default.
- W4307296084 hasRelatedWork W4299822940 @default.
- W4307296084 hasVolume "117" @default.
- W4307296084 isParatext "false" @default.
- W4307296084 isRetracted "false" @default.
- W4307296084 workType "article" @default.