Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307337446> ?p ?o ?g. }
- W4307337446 endingPage "119" @default.
- W4307337446 startingPage "112" @default.
- W4307337446 abstract "Abstract Objective Distributed learning avoids problems associated with central data collection by training models locally at each site. This can be achieved by federated learning (FL) aggregating multiple models that were trained in parallel or training a single model visiting sites sequentially, the traveling model (TM). While both approaches have been applied to medical imaging tasks, their performance in limited local data scenarios remains unknown. In this study, we specifically analyze FL and TM performances when very small sample sizes are available per site. Materials and Methods 2025 T1-weighted magnetic resonance imaging scans were used to investigate the effect of sample sizes on FL and TM for brain age prediction. We evaluated models across 18 scenarios varying the number of samples per site (1, 2, 5, 10, and 20) and the number of training rounds (20, 40, and 200). Results Our results demonstrate that the TM outperforms FL, for every sample size examined. In the extreme case when each site provided only one sample, FL achieved a mean absolute error (MAE) of 18.9 ± 0.13 years, while the TM achieved a MAE of 6.21 ± 0.50 years, comparable to central learning (MAE = 5.99 years). Discussion Although FL is more commonly used, our study demonstrates that TM is the best implementation for small sample sizes. Conclusion The TM offers new opportunities to apply machine learning models in rare diseases and pediatric research but also allows even small hospitals to contribute small datasets." @default.
- W4307337446 created "2022-10-31" @default.
- W4307337446 creator A5021288984 @default.
- W4307337446 creator A5026674091 @default.
- W4307337446 creator A5040728822 @default.
- W4307337446 creator A5049542143 @default.
- W4307337446 creator A5051753610 @default.
- W4307337446 creator A5054241170 @default.
- W4307337446 date "2022-10-26" @default.
- W4307337446 modified "2023-10-12" @default.
- W4307337446 title "An analysis of the effects of limited training data in distributed learning scenarios for brain age prediction" @default.
- W4307337446 cites W2078524519 @default.
- W4307337446 cites W2082704080 @default.
- W4307337446 cites W2131014997 @default.
- W4307337446 cites W2789395994 @default.
- W4307337446 cites W2795354529 @default.
- W4307337446 cites W2852041338 @default.
- W4307337446 cites W2897230576 @default.
- W4307337446 cites W2929665219 @default.
- W4307337446 cites W2963183964 @default.
- W4307337446 cites W2996201555 @default.
- W4307337446 cites W3020729718 @default.
- W4307337446 cites W3033511014 @default.
- W4307337446 cites W3033878890 @default.
- W4307337446 cites W3040685212 @default.
- W4307337446 cites W3045674654 @default.
- W4307337446 cites W3091943846 @default.
- W4307337446 cites W3094108931 @default.
- W4307337446 cites W3099081599 @default.
- W4307337446 cites W3187949263 @default.
- W4307337446 cites W3202476286 @default.
- W4307337446 cites W4200402675 @default.
- W4307337446 cites W4210858825 @default.
- W4307337446 cites W4220800641 @default.
- W4307337446 cites W4220833183 @default.
- W4307337446 cites W4226082367 @default.
- W4307337446 cites W4226226914 @default.
- W4307337446 doi "https://doi.org/10.1093/jamia/ocac204" @default.
- W4307337446 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36287916" @default.
- W4307337446 hasPublicationYear "2022" @default.
- W4307337446 type Work @default.
- W4307337446 citedByCount "2" @default.
- W4307337446 countsByYear W43073374462023 @default.
- W4307337446 crossrefType "journal-article" @default.
- W4307337446 hasAuthorship W4307337446A5021288984 @default.
- W4307337446 hasAuthorship W4307337446A5026674091 @default.
- W4307337446 hasAuthorship W4307337446A5040728822 @default.
- W4307337446 hasAuthorship W4307337446A5049542143 @default.
- W4307337446 hasAuthorship W4307337446A5051753610 @default.
- W4307337446 hasAuthorship W4307337446A5054241170 @default.
- W4307337446 hasConcept C105795698 @default.
- W4307337446 hasConcept C119857082 @default.
- W4307337446 hasConcept C124101348 @default.
- W4307337446 hasConcept C126838900 @default.
- W4307337446 hasConcept C129848803 @default.
- W4307337446 hasConcept C133462117 @default.
- W4307337446 hasConcept C139945424 @default.
- W4307337446 hasConcept C143409427 @default.
- W4307337446 hasConcept C153180895 @default.
- W4307337446 hasConcept C154945302 @default.
- W4307337446 hasConcept C185592680 @default.
- W4307337446 hasConcept C188154048 @default.
- W4307337446 hasConcept C198531522 @default.
- W4307337446 hasConcept C3020318244 @default.
- W4307337446 hasConcept C33923547 @default.
- W4307337446 hasConcept C41008148 @default.
- W4307337446 hasConcept C43617362 @default.
- W4307337446 hasConcept C51632099 @default.
- W4307337446 hasConcept C71924100 @default.
- W4307337446 hasConceptScore W4307337446C105795698 @default.
- W4307337446 hasConceptScore W4307337446C119857082 @default.
- W4307337446 hasConceptScore W4307337446C124101348 @default.
- W4307337446 hasConceptScore W4307337446C126838900 @default.
- W4307337446 hasConceptScore W4307337446C129848803 @default.
- W4307337446 hasConceptScore W4307337446C133462117 @default.
- W4307337446 hasConceptScore W4307337446C139945424 @default.
- W4307337446 hasConceptScore W4307337446C143409427 @default.
- W4307337446 hasConceptScore W4307337446C153180895 @default.
- W4307337446 hasConceptScore W4307337446C154945302 @default.
- W4307337446 hasConceptScore W4307337446C185592680 @default.
- W4307337446 hasConceptScore W4307337446C188154048 @default.
- W4307337446 hasConceptScore W4307337446C198531522 @default.
- W4307337446 hasConceptScore W4307337446C3020318244 @default.
- W4307337446 hasConceptScore W4307337446C33923547 @default.
- W4307337446 hasConceptScore W4307337446C41008148 @default.
- W4307337446 hasConceptScore W4307337446C43617362 @default.
- W4307337446 hasConceptScore W4307337446C51632099 @default.
- W4307337446 hasConceptScore W4307337446C71924100 @default.
- W4307337446 hasFunder F4320310917 @default.
- W4307337446 hasFunder F4320320994 @default.
- W4307337446 hasFunder F4320334506 @default.
- W4307337446 hasIssue "1" @default.
- W4307337446 hasLocation W43073374461 @default.
- W4307337446 hasLocation W43073374462 @default.
- W4307337446 hasOpenAccess W4307337446 @default.
- W4307337446 hasPrimaryLocation W43073374461 @default.
- W4307337446 hasRelatedWork W1986523067 @default.
- W4307337446 hasRelatedWork W2107854016 @default.