Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307367090> ?p ?o ?g. }
- W4307367090 endingPage "2826" @default.
- W4307367090 startingPage "2811" @default.
- W4307367090 abstract "Abstract Weather radar networks provide wide‐ranging opportunities for ecologists to quantify and predict movements of airborne organisms over unprecedented geographical expanses. The typically sparse spatial distribution of radar measurements poses, however, a major challenge to spatiotemporal predictive modelling. We propose FluxRGNN, a recurrent graph neural network that is based on a generic mechanistic description of population‐level movements across the Voronoi tessellation of radar sites. The resulting hybrid model capitalises on local associations between environmental conditions and animal density as well as on spatiotemporal dependencies inherent to the movement process. We applied FluxRGNN to make 72‐h forecasts of nocturnal bird migration over Western Europe using simulated trajectories and measurements from the European weather radar network. For both datasets, FluxRGNN achieves higher predictive performance than baseline models based on environmental conditions alone. It effectively disentangles local take‐off and landing dynamics from aerial movements and correctly predicts migration directions with an accuracy of 87%. Continental‐scale forecasts of animal density and biomass fluxes have the potential to improve the impact and cost‐effectiveness of wildlife management and conservation efforts. With FluxRGNN this becomes feasible for nocturnal bird migration. In the future, other migration systems could benefit from applying the proposed method to similar static sensor networks." @default.
- W4307367090 created "2022-10-31" @default.
- W4307367090 creator A5004265743 @default.
- W4307367090 creator A5005753034 @default.
- W4307367090 creator A5029322468 @default.
- W4307367090 creator A5089105840 @default.
- W4307367090 date "2022-10-27" @default.
- W4307367090 modified "2023-10-14" @default.
- W4307367090 title "Learning to predict spatiotemporal movement dynamics from weather radar networks" @default.
- W4307367090 cites W1925029177 @default.
- W4307367090 cites W1963851573 @default.
- W4307367090 cites W1966153221 @default.
- W4307367090 cites W2009169420 @default.
- W4307367090 cites W2020722724 @default.
- W4307367090 cites W2031660139 @default.
- W4307367090 cites W2064675550 @default.
- W4307367090 cites W2092330564 @default.
- W4307367090 cites W2097601813 @default.
- W4307367090 cites W2099057558 @default.
- W4307367090 cites W2131316266 @default.
- W4307367090 cites W2131908956 @default.
- W4307367090 cites W2149555119 @default.
- W4307367090 cites W2166265139 @default.
- W4307367090 cites W2174458738 @default.
- W4307367090 cites W2234983292 @default.
- W4307367090 cites W2551872855 @default.
- W4307367090 cites W2786425804 @default.
- W4307367090 cites W2808535700 @default.
- W4307367090 cites W2808599699 @default.
- W4307367090 cites W2883471235 @default.
- W4307367090 cites W2889806161 @default.
- W4307367090 cites W2891503716 @default.
- W4307367090 cites W2891876682 @default.
- W4307367090 cites W2896497962 @default.
- W4307367090 cites W2913382641 @default.
- W4307367090 cites W2952556784 @default.
- W4307367090 cites W2976854177 @default.
- W4307367090 cites W3000508506 @default.
- W4307367090 cites W3004612232 @default.
- W4307367090 cites W3011667710 @default.
- W4307367090 cites W3025949386 @default.
- W4307367090 cites W3103720336 @default.
- W4307367090 cites W3140875125 @default.
- W4307367090 cites W3154548091 @default.
- W4307367090 cites W3155261023 @default.
- W4307367090 cites W3168658853 @default.
- W4307367090 cites W3177306570 @default.
- W4307367090 cites W4239933792 @default.
- W4307367090 cites W4307367090 @default.
- W4307367090 doi "https://doi.org/10.1111/2041-210x.14007" @default.
- W4307367090 hasPublicationYear "2022" @default.
- W4307367090 type Work @default.
- W4307367090 citedByCount "2" @default.
- W4307367090 countsByYear W43073670902022 @default.
- W4307367090 countsByYear W43073670902023 @default.
- W4307367090 crossrefType "journal-article" @default.
- W4307367090 hasAuthorship W4307367090A5004265743 @default.
- W4307367090 hasAuthorship W4307367090A5005753034 @default.
- W4307367090 hasAuthorship W4307367090A5029322468 @default.
- W4307367090 hasAuthorship W4307367090A5089105840 @default.
- W4307367090 hasBestOaLocation W43073670901 @default.
- W4307367090 hasConcept C111368507 @default.
- W4307367090 hasConcept C12725497 @default.
- W4307367090 hasConcept C127313418 @default.
- W4307367090 hasConcept C144024400 @default.
- W4307367090 hasConcept C149923435 @default.
- W4307367090 hasConcept C18903297 @default.
- W4307367090 hasConcept C205649164 @default.
- W4307367090 hasConcept C2777575432 @default.
- W4307367090 hasConcept C2908647359 @default.
- W4307367090 hasConcept C39432304 @default.
- W4307367090 hasConcept C41008148 @default.
- W4307367090 hasConcept C554190296 @default.
- W4307367090 hasConcept C76155785 @default.
- W4307367090 hasConcept C86803240 @default.
- W4307367090 hasConceptScore W4307367090C111368507 @default.
- W4307367090 hasConceptScore W4307367090C12725497 @default.
- W4307367090 hasConceptScore W4307367090C127313418 @default.
- W4307367090 hasConceptScore W4307367090C144024400 @default.
- W4307367090 hasConceptScore W4307367090C149923435 @default.
- W4307367090 hasConceptScore W4307367090C18903297 @default.
- W4307367090 hasConceptScore W4307367090C205649164 @default.
- W4307367090 hasConceptScore W4307367090C2777575432 @default.
- W4307367090 hasConceptScore W4307367090C2908647359 @default.
- W4307367090 hasConceptScore W4307367090C39432304 @default.
- W4307367090 hasConceptScore W4307367090C41008148 @default.
- W4307367090 hasConceptScore W4307367090C554190296 @default.
- W4307367090 hasConceptScore W4307367090C76155785 @default.
- W4307367090 hasConceptScore W4307367090C86803240 @default.
- W4307367090 hasFunder F4320320924 @default.
- W4307367090 hasFunder F4320321108 @default.
- W4307367090 hasFunder F4320321454 @default.
- W4307367090 hasFunder F4320321800 @default.
- W4307367090 hasFunder F4320335353 @default.
- W4307367090 hasIssue "12" @default.
- W4307367090 hasLocation W43073670901 @default.
- W4307367090 hasLocation W43073670902 @default.
- W4307367090 hasOpenAccess W4307367090 @default.