Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307371567> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4307371567 abstract "<p>Medical image segmentation is essential in medical image analysis since it can provide reliable assistance in computer-aided clinical diagnosis, treatment planning, and intervention. Although deep learning algorithms based on CNNs and Transformers have made notable progress in medical image segmentation, it is still challenging owing to the objects with complex structures, low discrimination and differences between individuals. To alleviate the problems, we propose a novel 3D medical image segmentation network based on Transformers and CNNs combining morphological information and reticular mechanism. Firstly, the morphological constraint stream is designed to learn the prior shape information based on the CNN model for enhancing the interpretability of the ultimate trained model and accelerating the convergence. Secondly, the Reticular Transformer is utilized to obtain multi-scale information based on the Transformer, which can bind the local texture information and underlying semantic information to further acquire the feature maps with sufficient details and receptive field. The experiments demonstrate that our proposed method outperforms many existing segmentation models in terms of the performance in metrics DSC and HD (80.46% in DSC on the Synapse dataset and 90.83% in DSC on the ACDC dataset). The code will be released at https://github.com/rocklijun/MCRformer. Our proposed method can not only achieve superior performance compared with most of the current state-of-the-art methods, but also enhance the robustness and interpretability of the model. Furthermore, the proposed morphological constraint stream has the potential to be transferred to other frameworks for different medical image analysis tasks.</p>" @default.
- W4307371567 created "2022-11-01" @default.
- W4307371567 creator A5009332664 @default.
- W4307371567 creator A5027166602 @default.
- W4307371567 creator A5027835055 @default.
- W4307371567 creator A5059464739 @default.
- W4307371567 creator A5069133087 @default.
- W4307371567 creator A5076088705 @default.
- W4307371567 creator A5076921272 @default.
- W4307371567 creator A5077423550 @default.
- W4307371567 creator A5090886028 @default.
- W4307371567 creator A5091772988 @default.
- W4307371567 date "2022-10-26" @default.
- W4307371567 modified "2023-10-18" @default.
- W4307371567 title "MCRformer: Morphological Constraint Reticular Transformer for 3D Medical Image Segmentation" @default.
- W4307371567 doi "https://doi.org/10.36227/techrxiv.21280674.v2" @default.
- W4307371567 hasPublicationYear "2022" @default.
- W4307371567 type Work @default.
- W4307371567 citedByCount "0" @default.
- W4307371567 crossrefType "posted-content" @default.
- W4307371567 hasAuthorship W4307371567A5009332664 @default.
- W4307371567 hasAuthorship W4307371567A5027166602 @default.
- W4307371567 hasAuthorship W4307371567A5027835055 @default.
- W4307371567 hasAuthorship W4307371567A5059464739 @default.
- W4307371567 hasAuthorship W4307371567A5069133087 @default.
- W4307371567 hasAuthorship W4307371567A5076088705 @default.
- W4307371567 hasAuthorship W4307371567A5076921272 @default.
- W4307371567 hasAuthorship W4307371567A5077423550 @default.
- W4307371567 hasAuthorship W4307371567A5090886028 @default.
- W4307371567 hasAuthorship W4307371567A5091772988 @default.
- W4307371567 hasBestOaLocation W43073715671 @default.
- W4307371567 hasConcept C104317684 @default.
- W4307371567 hasConcept C108583219 @default.
- W4307371567 hasConcept C119857082 @default.
- W4307371567 hasConcept C121332964 @default.
- W4307371567 hasConcept C124504099 @default.
- W4307371567 hasConcept C153180895 @default.
- W4307371567 hasConcept C154945302 @default.
- W4307371567 hasConcept C165801399 @default.
- W4307371567 hasConcept C185592680 @default.
- W4307371567 hasConcept C2781067378 @default.
- W4307371567 hasConcept C41008148 @default.
- W4307371567 hasConcept C55493867 @default.
- W4307371567 hasConcept C62520636 @default.
- W4307371567 hasConcept C63479239 @default.
- W4307371567 hasConcept C66322947 @default.
- W4307371567 hasConcept C89600930 @default.
- W4307371567 hasConceptScore W4307371567C104317684 @default.
- W4307371567 hasConceptScore W4307371567C108583219 @default.
- W4307371567 hasConceptScore W4307371567C119857082 @default.
- W4307371567 hasConceptScore W4307371567C121332964 @default.
- W4307371567 hasConceptScore W4307371567C124504099 @default.
- W4307371567 hasConceptScore W4307371567C153180895 @default.
- W4307371567 hasConceptScore W4307371567C154945302 @default.
- W4307371567 hasConceptScore W4307371567C165801399 @default.
- W4307371567 hasConceptScore W4307371567C185592680 @default.
- W4307371567 hasConceptScore W4307371567C2781067378 @default.
- W4307371567 hasConceptScore W4307371567C41008148 @default.
- W4307371567 hasConceptScore W4307371567C55493867 @default.
- W4307371567 hasConceptScore W4307371567C62520636 @default.
- W4307371567 hasConceptScore W4307371567C63479239 @default.
- W4307371567 hasConceptScore W4307371567C66322947 @default.
- W4307371567 hasConceptScore W4307371567C89600930 @default.
- W4307371567 hasLocation W43073715671 @default.
- W4307371567 hasLocation W43073715672 @default.
- W4307371567 hasOpenAccess W4307371567 @default.
- W4307371567 hasPrimaryLocation W43073715671 @default.
- W4307371567 hasRelatedWork W2605281151 @default.
- W4307371567 hasRelatedWork W2963041618 @default.
- W4307371567 hasRelatedWork W3006943036 @default.
- W4307371567 hasRelatedWork W3129898729 @default.
- W4307371567 hasRelatedWork W3191046242 @default.
- W4307371567 hasRelatedWork W3208423683 @default.
- W4307371567 hasRelatedWork W4206493799 @default.
- W4307371567 hasRelatedWork W4213225422 @default.
- W4307371567 hasRelatedWork W4294031299 @default.
- W4307371567 hasRelatedWork W4299487748 @default.
- W4307371567 isParatext "false" @default.
- W4307371567 isRetracted "false" @default.
- W4307371567 workType "article" @default.