Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307392012> ?p ?o ?g. }
- W4307392012 endingPage "100418" @default.
- W4307392012 startingPage "100418" @default.
- W4307392012 abstract "Applications of Machine learning (ML) in health informatics have gained increasing attention. The timely diagnosis of kidney disease and the subsequent immediate response to it are of the cases that shed light on the substantial role of ML diagnostic algorithms. ML in Kidney Disease Diagnosis (MLKDD) is an active research topic that aims at assisting physicians with computer-aided systems. Various investigations have tried to test the feasibility, applicability, and superiority of different ML methods over each other. However, lacking a holistic survey for this literature has always been a noticeable shortcoming. Hence, this paper provides a comprehensive literature review of ML utilizations in kidney disease diagnosis by introducing two different frameworks, one for MLs, classifying various aspects of kidney disease diagnosis, and the other is the framework of medical sub-fields related to MLKDD. In addition, research gaps are discovered, and future study directions are discussed." @default.
- W4307392012 created "2022-11-01" @default.
- W4307392012 creator A5002624107 @default.
- W4307392012 creator A5011382830 @default.
- W4307392012 creator A5039734717 @default.
- W4307392012 creator A5049082792 @default.
- W4307392012 date "2022-12-01" @default.
- W4307392012 modified "2023-09-26" @default.
- W4307392012 title "A survey of machine learning in kidney disease diagnosis" @default.
- W4307392012 cites W1534477342 @default.
- W4307392012 cites W1989474226 @default.
- W4307392012 cites W2002497044 @default.
- W4307392012 cites W2005349364 @default.
- W4307392012 cites W2007872832 @default.
- W4307392012 cites W2024067944 @default.
- W4307392012 cites W2031714465 @default.
- W4307392012 cites W2038779553 @default.
- W4307392012 cites W2043575472 @default.
- W4307392012 cites W2078418295 @default.
- W4307392012 cites W2094725865 @default.
- W4307392012 cites W2096094293 @default.
- W4307392012 cites W2109215775 @default.
- W4307392012 cites W2122147639 @default.
- W4307392012 cites W2241668610 @default.
- W4307392012 cites W2292979739 @default.
- W4307392012 cites W2300749022 @default.
- W4307392012 cites W2319550379 @default.
- W4307392012 cites W2464795325 @default.
- W4307392012 cites W2467846795 @default.
- W4307392012 cites W2475875369 @default.
- W4307392012 cites W2545591531 @default.
- W4307392012 cites W2548466742 @default.
- W4307392012 cites W2560015483 @default.
- W4307392012 cites W2573280827 @default.
- W4307392012 cites W2582464951 @default.
- W4307392012 cites W2593330790 @default.
- W4307392012 cites W2604190157 @default.
- W4307392012 cites W2735916432 @default.
- W4307392012 cites W2736108290 @default.
- W4307392012 cites W2752073414 @default.
- W4307392012 cites W2765706790 @default.
- W4307392012 cites W2765821884 @default.
- W4307392012 cites W2765995359 @default.
- W4307392012 cites W2768191613 @default.
- W4307392012 cites W2772577987 @default.
- W4307392012 cites W2779895460 @default.
- W4307392012 cites W2782914308 @default.
- W4307392012 cites W2784081781 @default.
- W4307392012 cites W2794885170 @default.
- W4307392012 cites W2806838739 @default.
- W4307392012 cites W2885709998 @default.
- W4307392012 cites W2887712995 @default.
- W4307392012 cites W2889142971 @default.
- W4307392012 cites W2891365426 @default.
- W4307392012 cites W2897733270 @default.
- W4307392012 cites W2897745540 @default.
- W4307392012 cites W2902348370 @default.
- W4307392012 cites W2903824883 @default.
- W4307392012 cites W2909666034 @default.
- W4307392012 cites W2913705621 @default.
- W4307392012 cites W2920853473 @default.
- W4307392012 cites W2933013505 @default.
- W4307392012 cites W2937554593 @default.
- W4307392012 cites W2940596626 @default.
- W4307392012 cites W2945048168 @default.
- W4307392012 cites W2955086442 @default.
- W4307392012 cites W2957591447 @default.
- W4307392012 cites W2962921104 @default.
- W4307392012 cites W2969720828 @default.
- W4307392012 cites W2973300782 @default.
- W4307392012 cites W2982215737 @default.
- W4307392012 cites W2990533738 @default.
- W4307392012 cites W2997177758 @default.
- W4307392012 cites W3000124157 @default.
- W4307392012 cites W3004584928 @default.
- W4307392012 cites W3006663437 @default.
- W4307392012 cites W3011040365 @default.
- W4307392012 cites W3013235542 @default.
- W4307392012 cites W3015406209 @default.
- W4307392012 cites W3021399285 @default.
- W4307392012 cites W3033574992 @default.
- W4307392012 cites W3036657808 @default.
- W4307392012 cites W3039863359 @default.
- W4307392012 cites W3198350258 @default.
- W4307392012 cites W4251513392 @default.
- W4307392012 doi "https://doi.org/10.1016/j.mlwa.2022.100418" @default.
- W4307392012 hasPublicationYear "2022" @default.
- W4307392012 type Work @default.
- W4307392012 citedByCount "2" @default.
- W4307392012 countsByYear W43073920122023 @default.
- W4307392012 crossrefType "journal-article" @default.
- W4307392012 hasAuthorship W4307392012A5002624107 @default.
- W4307392012 hasAuthorship W4307392012A5011382830 @default.
- W4307392012 hasAuthorship W4307392012A5039734717 @default.
- W4307392012 hasAuthorship W4307392012A5049082792 @default.
- W4307392012 hasBestOaLocation W43073920121 @default.
- W4307392012 hasConcept C119599485 @default.
- W4307392012 hasConcept C119857082 @default.