Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307392126> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4307392126 endingPage "109129" @default.
- W4307392126 startingPage "109129" @default.
- W4307392126 abstract "• We propose a novel infinite mixture of Gaussian processes functional regressions model based on the Dirichlet process, which sidesteps the model selection problem in existing methods. • We design an effective variational EM algorithm for parameter learning and posterior inference. • Some possible variants of the proposed model are discussed, including adaptive hyper-parameter learning, Pitman-Yor process based mixture model, and variational tempering. • Experimental results show that the proposed method outperforms the competing methods. Gaussian Process Functional Regression (GPFR) is a powerful tool in functional data analysis. In practical applications, functional data may be generated from different signal sources, and a single GPFR is not flexible enough to accurately model the data. To tackle the heterogeneity problem, a finite mixture of Gaussian Process Functional Regressions (mix-GPFR) was suggested. However, the number of components in mix-GPFR needs to be specified a priori, which is difficult to determine in practice. In this paper, we propose a Dirichlet Process Mixture of Gaussian Process Functional Regressions (DPM-GPFR), in which there are potentially infinite many GPFR components dominated by a Dirichlet process. Thus, DPM-GPFR is far more flexible than a single GPFR, and sidestep the model selection problem in mix-GPFR. We further develop a fully Bayesian treatment for learning DPM-GPFR based on the Variational Expectation-Maximization (VEM) algorithm. Experimental results on both synthetic datasets and real-world datasets demonstrate the effectiveness of our proposed method." @default.
- W4307392126 created "2022-11-01" @default.
- W4307392126 creator A5067164993 @default.
- W4307392126 creator A5083088285 @default.
- W4307392126 date "2023-02-01" @default.
- W4307392126 modified "2023-10-11" @default.
- W4307392126 title "Dirichlet process mixture of Gaussian process functional regressions and its variational EM algorithm" @default.
- W4307392126 cites W16794263 @default.
- W4307392126 cites W1982510939 @default.
- W4307392126 cites W1987052429 @default.
- W4307392126 cites W2025653905 @default.
- W4307392126 cites W2036836210 @default.
- W4307392126 cites W2062476441 @default.
- W4307392126 cites W2069297020 @default.
- W4307392126 cites W2127498532 @default.
- W4307392126 cites W2146260999 @default.
- W4307392126 cites W2160299137 @default.
- W4307392126 cites W2488546812 @default.
- W4307392126 cites W2598145118 @default.
- W4307392126 cites W2780846187 @default.
- W4307392126 cites W2782956198 @default.
- W4307392126 cites W2898045070 @default.
- W4307392126 cites W2901487119 @default.
- W4307392126 cites W3000508506 @default.
- W4307392126 cites W3101380508 @default.
- W4307392126 cites W3123053997 @default.
- W4307392126 cites W3182322885 @default.
- W4307392126 cites W4293052541 @default.
- W4307392126 doi "https://doi.org/10.1016/j.patcog.2022.109129" @default.
- W4307392126 hasPublicationYear "2023" @default.
- W4307392126 type Work @default.
- W4307392126 citedByCount "4" @default.
- W4307392126 countsByYear W43073921262023 @default.
- W4307392126 crossrefType "journal-article" @default.
- W4307392126 hasAuthorship W4307392126A5067164993 @default.
- W4307392126 hasAuthorship W4307392126A5083088285 @default.
- W4307392126 hasConcept C111919701 @default.
- W4307392126 hasConcept C11413529 @default.
- W4307392126 hasConcept C121332964 @default.
- W4307392126 hasConcept C126255220 @default.
- W4307392126 hasConcept C154945302 @default.
- W4307392126 hasConcept C163716315 @default.
- W4307392126 hasConcept C2776214188 @default.
- W4307392126 hasConcept C2781280628 @default.
- W4307392126 hasConcept C28826006 @default.
- W4307392126 hasConcept C33923547 @default.
- W4307392126 hasConcept C41008148 @default.
- W4307392126 hasConcept C61224824 @default.
- W4307392126 hasConcept C61326573 @default.
- W4307392126 hasConcept C62520636 @default.
- W4307392126 hasConcept C98045186 @default.
- W4307392126 hasConceptScore W4307392126C111919701 @default.
- W4307392126 hasConceptScore W4307392126C11413529 @default.
- W4307392126 hasConceptScore W4307392126C121332964 @default.
- W4307392126 hasConceptScore W4307392126C126255220 @default.
- W4307392126 hasConceptScore W4307392126C154945302 @default.
- W4307392126 hasConceptScore W4307392126C163716315 @default.
- W4307392126 hasConceptScore W4307392126C2776214188 @default.
- W4307392126 hasConceptScore W4307392126C2781280628 @default.
- W4307392126 hasConceptScore W4307392126C28826006 @default.
- W4307392126 hasConceptScore W4307392126C33923547 @default.
- W4307392126 hasConceptScore W4307392126C41008148 @default.
- W4307392126 hasConceptScore W4307392126C61224824 @default.
- W4307392126 hasConceptScore W4307392126C61326573 @default.
- W4307392126 hasConceptScore W4307392126C62520636 @default.
- W4307392126 hasConceptScore W4307392126C98045186 @default.
- W4307392126 hasFunder F4320321540 @default.
- W4307392126 hasFunder F4320335777 @default.
- W4307392126 hasLocation W43073921261 @default.
- W4307392126 hasOpenAccess W4307392126 @default.
- W4307392126 hasPrimaryLocation W43073921261 @default.
- W4307392126 hasRelatedWork W1578916557 @default.
- W4307392126 hasRelatedWork W1605972624 @default.
- W4307392126 hasRelatedWork W1833498382 @default.
- W4307392126 hasRelatedWork W1992295166 @default.
- W4307392126 hasRelatedWork W2031917313 @default.
- W4307392126 hasRelatedWork W2972093345 @default.
- W4307392126 hasRelatedWork W3030242110 @default.
- W4307392126 hasRelatedWork W3194589442 @default.
- W4307392126 hasRelatedWork W4293482264 @default.
- W4307392126 hasRelatedWork W4386716613 @default.
- W4307392126 hasVolume "134" @default.
- W4307392126 isParatext "false" @default.
- W4307392126 isRetracted "false" @default.
- W4307392126 workType "article" @default.