Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307436910> ?p ?o ?g. }
- W4307436910 endingPage "714" @default.
- W4307436910 startingPage "696" @default.
- W4307436910 abstract "Virtual autopsies (VAs) are non-invasive, bypassing many of the challenges posed by traditional autopsies (TAs). This is a literature review about the sensitivity of the main VA techniques: post mortem (PM) computed tomography (PMCT) and PM magnetic resonance (PMMR). This could help to identify the most appropriate uses for VA, and where future research should focus. A review was performed, searching for literature from the last 10 years regarding how sensitive VA is at detecting common lesions that could cause or contribute to death. 33 studies were included. There was strong agreement that PMCT had strengths in detecting: free gas; fractures; large fluid accumulations; and calcifications. PMCT’s weaknesses included missing: pulmonary emboli; myocardial infarctions; and visceral/soft tissue lesions. The strengths of PMMR were less widely agreed, but included detecting: large fluid collections; myocardial infarctions; and visceral/soft tissue lesions. There were no wide agreements on PMMR’s weaknesses due to a lack of literature. Therefore, VA is a useful adjunct to TA; however, its drawbacks in reliably detecting common causes of death restrict its ability to fully replace TA. Novel imaging techniques are being developed in order to bridge the current gaps of VA, and make autopsies even less invasive." @default.
- W4307436910 created "2022-11-01" @default.
- W4307436910 creator A5017818275 @default.
- W4307436910 creator A5037100087 @default.
- W4307436910 date "2022-10-27" @default.
- W4307436910 modified "2023-09-26" @default.
- W4307436910 title "Autopsy by Imaging: The Last 10 Years" @default.
- W4307436910 cites W1618171945 @default.
- W4307436910 cites W1992909507 @default.
- W4307436910 cites W1995498983 @default.
- W4307436910 cites W2000372407 @default.
- W4307436910 cites W2008777841 @default.
- W4307436910 cites W2017093629 @default.
- W4307436910 cites W2044395885 @default.
- W4307436910 cites W2050491503 @default.
- W4307436910 cites W2061746051 @default.
- W4307436910 cites W2069762280 @default.
- W4307436910 cites W2075553404 @default.
- W4307436910 cites W2077995267 @default.
- W4307436910 cites W2079057631 @default.
- W4307436910 cites W2082496340 @default.
- W4307436910 cites W2086167105 @default.
- W4307436910 cites W2088935236 @default.
- W4307436910 cites W2110242962 @default.
- W4307436910 cites W2114583963 @default.
- W4307436910 cites W2117143190 @default.
- W4307436910 cites W2128277207 @default.
- W4307436910 cites W2130263700 @default.
- W4307436910 cites W2136590307 @default.
- W4307436910 cites W2148564454 @default.
- W4307436910 cites W2157804765 @default.
- W4307436910 cites W2180512231 @default.
- W4307436910 cites W2188448545 @default.
- W4307436910 cites W2196145405 @default.
- W4307436910 cites W2217624179 @default.
- W4307436910 cites W2224072575 @default.
- W4307436910 cites W2338676209 @default.
- W4307436910 cites W2340988357 @default.
- W4307436910 cites W2526234769 @default.
- W4307436910 cites W2536203268 @default.
- W4307436910 cites W2562503256 @default.
- W4307436910 cites W2601880133 @default.
- W4307436910 cites W2604221705 @default.
- W4307436910 cites W2617784095 @default.
- W4307436910 cites W2725182023 @default.
- W4307436910 cites W2736466895 @default.
- W4307436910 cites W2738941591 @default.
- W4307436910 cites W2750874115 @default.
- W4307436910 cites W2757082215 @default.
- W4307436910 cites W2766626952 @default.
- W4307436910 cites W2774850974 @default.
- W4307436910 cites W2775029682 @default.
- W4307436910 cites W2782392877 @default.
- W4307436910 cites W2789880460 @default.
- W4307436910 cites W2789880815 @default.
- W4307436910 cites W2790343297 @default.
- W4307436910 cites W2793147609 @default.
- W4307436910 cites W2799532998 @default.
- W4307436910 cites W2885067420 @default.
- W4307436910 cites W2889072082 @default.
- W4307436910 cites W2893890262 @default.
- W4307436910 cites W2894474672 @default.
- W4307436910 cites W2898721028 @default.
- W4307436910 cites W2902596316 @default.
- W4307436910 cites W2914105791 @default.
- W4307436910 cites W2930851103 @default.
- W4307436910 cites W2933324484 @default.
- W4307436910 cites W2944257004 @default.
- W4307436910 cites W2950809138 @default.
- W4307436910 cites W2966067701 @default.
- W4307436910 cites W2969627844 @default.
- W4307436910 cites W3012877098 @default.
- W4307436910 cites W3013091193 @default.
- W4307436910 cites W3023213671 @default.
- W4307436910 cites W3027215140 @default.
- W4307436910 cites W3030015894 @default.
- W4307436910 cites W3030831264 @default.
- W4307436910 cites W3036281867 @default.
- W4307436910 cites W3039601156 @default.
- W4307436910 cites W3041098546 @default.
- W4307436910 cites W3042312237 @default.
- W4307436910 cites W3047516221 @default.
- W4307436910 cites W3089911288 @default.
- W4307436910 cites W3092996889 @default.
- W4307436910 cites W3095582908 @default.
- W4307436910 cites W3095720817 @default.
- W4307436910 cites W3095730606 @default.
- W4307436910 cites W3120388848 @default.
- W4307436910 cites W3125776995 @default.
- W4307436910 cites W3133242341 @default.
- W4307436910 cites W3198221592 @default.
- W4307436910 cites W4210518935 @default.
- W4307436910 cites W4213044226 @default.
- W4307436910 cites W2330221753 @default.
- W4307436910 doi "https://doi.org/10.3390/forensicsci2040052" @default.
- W4307436910 hasPublicationYear "2022" @default.
- W4307436910 type Work @default.
- W4307436910 citedByCount "1" @default.