Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307446570> ?p ?o ?g. }
- W4307446570 endingPage "14" @default.
- W4307446570 startingPage "1" @default.
- W4307446570 abstract "The exact computation of network k-terminal reliability is an NP-hard problem, and many approximation methods have been proposed as alternatives, among which the neural network-based approaches are believed to be the most effective and promising. However, the existing neural network-based methods either ignore the local structures in the network topology or process the local structures as Euclidean data, while the network topology represented by the graph is in fact non-Euclidean. Seeing that the Graph Convolution Neural network (GCN) is a generalization of convolution operators onto non-Euclidean data structure, in an effort to fill in the gap, this paper proposes a GCN-based framework for the estimation of communication network reliability. First, a dataset with sufficient sample size is constructed, by calculating the k-terminal reliability via the exact contraction-deletion method for the generated network samples. Then, an estimation model based on GCN is built, where several graph convolution layers process input information and extract node-level structural features from the network topology, a concatenation layer fuses the structural features into a graph-level representation feature, and a multi-layer perceptron computes the k-terminal reliability as output. To demonstrate the practicality and rationality of our proposed model, comparative experiments are carried out on 12 datasets, the results of which show that our proposed GCN model has an average of 59.60% and 57.52% improvement over existing methods on homogeneous datasets and heterogeneous datasets, respectively." @default.
- W4307446570 created "2022-11-01" @default.
- W4307446570 creator A5061124176 @default.
- W4307446570 creator A5065320956 @default.
- W4307446570 creator A5072542993 @default.
- W4307446570 creator A5078948895 @default.
- W4307446570 date "2022-10-26" @default.
- W4307446570 modified "2023-10-01" @default.
- W4307446570 title "A Graph Convolution Neural Network-Based Framework for Communication Network K-Terminal Reliability Estimation" @default.
- W4307446570 cites W1501025043 @default.
- W4307446570 cites W1979925663 @default.
- W4307446570 cites W1991224838 @default.
- W4307446570 cites W2008013300 @default.
- W4307446570 cites W2020473855 @default.
- W4307446570 cites W2029478301 @default.
- W4307446570 cites W2045868194 @default.
- W4307446570 cites W2105503739 @default.
- W4307446570 cites W2113136889 @default.
- W4307446570 cites W2125106363 @default.
- W4307446570 cites W2135551630 @default.
- W4307446570 cites W2143676145 @default.
- W4307446570 cites W2155834877 @default.
- W4307446570 cites W2175940139 @default.
- W4307446570 cites W2314784835 @default.
- W4307446570 cites W2555397021 @default.
- W4307446570 cites W2577994553 @default.
- W4307446570 cites W2598004052 @default.
- W4307446570 cites W2740989184 @default.
- W4307446570 cites W2752709690 @default.
- W4307446570 cites W2769658706 @default.
- W4307446570 cites W2780502868 @default.
- W4307446570 cites W2783261834 @default.
- W4307446570 cites W2784272016 @default.
- W4307446570 cites W2789788123 @default.
- W4307446570 cites W2808798366 @default.
- W4307446570 cites W2904832339 @default.
- W4307446570 cites W2909408768 @default.
- W4307446570 cites W2914353740 @default.
- W4307446570 cites W2962810718 @default.
- W4307446570 cites W2971508362 @default.
- W4307446570 cites W2991080871 @default.
- W4307446570 cites W2996451395 @default.
- W4307446570 cites W2997997679 @default.
- W4307446570 cites W2999301586 @default.
- W4307446570 cites W3046210524 @default.
- W4307446570 cites W3090873304 @default.
- W4307446570 cites W3091799615 @default.
- W4307446570 cites W3105772296 @default.
- W4307446570 cites W3110649188 @default.
- W4307446570 cites W3116478815 @default.
- W4307446570 cites W3118649749 @default.
- W4307446570 cites W3125750274 @default.
- W4307446570 cites W3128443161 @default.
- W4307446570 cites W3152893301 @default.
- W4307446570 cites W3176363435 @default.
- W4307446570 cites W3180896826 @default.
- W4307446570 cites W3194936869 @default.
- W4307446570 cites W3210828003 @default.
- W4307446570 cites W4245095611 @default.
- W4307446570 doi "https://doi.org/10.1155/2022/4316623" @default.
- W4307446570 hasPublicationYear "2022" @default.
- W4307446570 type Work @default.
- W4307446570 citedByCount "0" @default.
- W4307446570 crossrefType "journal-article" @default.
- W4307446570 hasAuthorship W4307446570A5061124176 @default.
- W4307446570 hasAuthorship W4307446570A5065320956 @default.
- W4307446570 hasAuthorship W4307446570A5072542993 @default.
- W4307446570 hasAuthorship W4307446570A5078948895 @default.
- W4307446570 hasBestOaLocation W43074465701 @default.
- W4307446570 hasConcept C11413529 @default.
- W4307446570 hasConcept C114614502 @default.
- W4307446570 hasConcept C124101348 @default.
- W4307446570 hasConcept C132525143 @default.
- W4307446570 hasConcept C154945302 @default.
- W4307446570 hasConcept C184720557 @default.
- W4307446570 hasConcept C199845137 @default.
- W4307446570 hasConcept C31258907 @default.
- W4307446570 hasConcept C33923547 @default.
- W4307446570 hasConcept C41008148 @default.
- W4307446570 hasConcept C50644808 @default.
- W4307446570 hasConcept C80444323 @default.
- W4307446570 hasConcept C81363708 @default.
- W4307446570 hasConceptScore W4307446570C11413529 @default.
- W4307446570 hasConceptScore W4307446570C114614502 @default.
- W4307446570 hasConceptScore W4307446570C124101348 @default.
- W4307446570 hasConceptScore W4307446570C132525143 @default.
- W4307446570 hasConceptScore W4307446570C154945302 @default.
- W4307446570 hasConceptScore W4307446570C184720557 @default.
- W4307446570 hasConceptScore W4307446570C199845137 @default.
- W4307446570 hasConceptScore W4307446570C31258907 @default.
- W4307446570 hasConceptScore W4307446570C33923547 @default.
- W4307446570 hasConceptScore W4307446570C41008148 @default.
- W4307446570 hasConceptScore W4307446570C50644808 @default.
- W4307446570 hasConceptScore W4307446570C80444323 @default.
- W4307446570 hasConceptScore W4307446570C81363708 @default.
- W4307446570 hasLocation W43074465701 @default.
- W4307446570 hasOpenAccess W4307446570 @default.
- W4307446570 hasPrimaryLocation W43074465701 @default.