Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307488568> ?p ?o ?g. }
- W4307488568 endingPage "103052" @default.
- W4307488568 startingPage "103052" @default.
- W4307488568 abstract "Owing to abnormal climate phenomena worldwide, forests are becoming dry and heat waves have started to occur, increasing the damage caused by wildfires. In addition to causing significant human and material damage, wildfires are also a major cause of critical pollutant emissions, in which fine dust generated by incomplete combustion pollutes the atmosphere, soil, and water. Early detection and monitoring are some of the main ways for minimizing wildfire damage, and a topic of research interest in various fields of artificial intelligence and computer vision. However, the lack of wildfire occurred image datasets is still challenge. Training deep learning model in this environment, can lead mis-detection when burning point is far from the camera or according to objects similar to flame and smoke. Our study attempted to create synthetic wildfire images in various shapes by inserting damage into a free-wildfire image using generative adversarial network (GAN) and Weakly supervised object localization (WSOL). The synthesized image can used as training data for object detection by applying the WSOL method with gradient-weighted activation map (Grad-CAM). Additionally, the YOLOv5s model was improved by adding a channel attention module; sequence-and-excitation (SE) layer and replace loss function as CIoU to address the issue of wildfire false detection in fire-like object and miss detection in small size smoke. Our proposed method, produced results as high as 7.19% in F1-score and 6.41% in average precision (AP) when compared to the existing traditional method. To use a deep learning model in practice, a lightweight model should be applied to the embedded models while maintaining high performance. The developed AI model was applied to the established drone and CCTV-based wildfire monitoring system, and a virtual experiment was conducted by generating virtual wildfires near forests in Korea." @default.
- W4307488568 created "2022-11-02" @default.
- W4307488568 creator A5012680933 @default.
- W4307488568 creator A5043420004 @default.
- W4307488568 creator A5057871415 @default.
- W4307488568 creator A5063933934 @default.
- W4307488568 date "2022-11-01" @default.
- W4307488568 modified "2023-09-29" @default.
- W4307488568 title "Advanced wildfire detection using generative adversarial network-based augmented datasets and weakly supervised object localization" @default.
- W4307488568 cites W1432470681 @default.
- W4307488568 cites W1566135517 @default.
- W4307488568 cites W1994488211 @default.
- W4307488568 cites W1996199746 @default.
- W4307488568 cites W2168356304 @default.
- W4307488568 cites W2295107390 @default.
- W4307488568 cites W2511413110 @default.
- W4307488568 cites W2604654088 @default.
- W4307488568 cites W2733381601 @default.
- W4307488568 cites W2752782242 @default.
- W4307488568 cites W2791569356 @default.
- W4307488568 cites W2792318059 @default.
- W4307488568 cites W2793947836 @default.
- W4307488568 cites W2883554151 @default.
- W4307488568 cites W2901982721 @default.
- W4307488568 cites W2962766617 @default.
- W4307488568 cites W2962785568 @default.
- W4307488568 cites W2962793481 @default.
- W4307488568 cites W2962834855 @default.
- W4307488568 cites W2962858109 @default.
- W4307488568 cites W2962867364 @default.
- W4307488568 cites W2963073614 @default.
- W4307488568 cites W2963446712 @default.
- W4307488568 cites W2964274719 @default.
- W4307488568 cites W2975479989 @default.
- W4307488568 cites W2977616508 @default.
- W4307488568 cites W2979622578 @default.
- W4307488568 cites W2980189057 @default.
- W4307488568 cites W2990371274 @default.
- W4307488568 cites W3000661959 @default.
- W4307488568 cites W3006810714 @default.
- W4307488568 cites W3011334834 @default.
- W4307488568 cites W3018930528 @default.
- W4307488568 cites W3024801014 @default.
- W4307488568 cites W3035037798 @default.
- W4307488568 cites W3099352527 @default.
- W4307488568 cites W3117782667 @default.
- W4307488568 cites W3118053232 @default.
- W4307488568 cites W3134198312 @default.
- W4307488568 cites W3159890710 @default.
- W4307488568 cites W3163598698 @default.
- W4307488568 cites W3170602832 @default.
- W4307488568 cites W3206006143 @default.
- W4307488568 cites W3208123866 @default.
- W4307488568 cites W4234090907 @default.
- W4307488568 cites W4285309873 @default.
- W4307488568 doi "https://doi.org/10.1016/j.jag.2022.103052" @default.
- W4307488568 hasPublicationYear "2022" @default.
- W4307488568 type Work @default.
- W4307488568 citedByCount "1" @default.
- W4307488568 countsByYear W43074885682023 @default.
- W4307488568 crossrefType "journal-article" @default.
- W4307488568 hasAuthorship W4307488568A5012680933 @default.
- W4307488568 hasAuthorship W4307488568A5043420004 @default.
- W4307488568 hasAuthorship W4307488568A5057871415 @default.
- W4307488568 hasAuthorship W4307488568A5063933934 @default.
- W4307488568 hasConcept C108583219 @default.
- W4307488568 hasConcept C115961682 @default.
- W4307488568 hasConcept C14036430 @default.
- W4307488568 hasConcept C153180895 @default.
- W4307488568 hasConcept C153294291 @default.
- W4307488568 hasConcept C154945302 @default.
- W4307488568 hasConcept C205649164 @default.
- W4307488568 hasConcept C2524010 @default.
- W4307488568 hasConcept C2776151529 @default.
- W4307488568 hasConcept C2781238097 @default.
- W4307488568 hasConcept C28719098 @default.
- W4307488568 hasConcept C31972630 @default.
- W4307488568 hasConcept C33923547 @default.
- W4307488568 hasConcept C39432304 @default.
- W4307488568 hasConcept C41008148 @default.
- W4307488568 hasConcept C58874564 @default.
- W4307488568 hasConcept C62649853 @default.
- W4307488568 hasConcept C78458016 @default.
- W4307488568 hasConcept C86803240 @default.
- W4307488568 hasConceptScore W4307488568C108583219 @default.
- W4307488568 hasConceptScore W4307488568C115961682 @default.
- W4307488568 hasConceptScore W4307488568C14036430 @default.
- W4307488568 hasConceptScore W4307488568C153180895 @default.
- W4307488568 hasConceptScore W4307488568C153294291 @default.
- W4307488568 hasConceptScore W4307488568C154945302 @default.
- W4307488568 hasConceptScore W4307488568C205649164 @default.
- W4307488568 hasConceptScore W4307488568C2524010 @default.
- W4307488568 hasConceptScore W4307488568C2776151529 @default.
- W4307488568 hasConceptScore W4307488568C2781238097 @default.
- W4307488568 hasConceptScore W4307488568C28719098 @default.
- W4307488568 hasConceptScore W4307488568C31972630 @default.
- W4307488568 hasConceptScore W4307488568C33923547 @default.
- W4307488568 hasConceptScore W4307488568C39432304 @default.