Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307504227> ?p ?o ?g. }
- W4307504227 endingPage "979" @default.
- W4307504227 startingPage "970" @default.
- W4307504227 abstract "To simultaneously register all the longitudinal images acquired in a radiotherapy course for analyzing patients' anatomy changes for adaptive radiotherapy (ART).To address the unique needs of ART, we designed Seq2Morph, a novel deep learning-based deformable image registration (DIR) network. Seq2Morph was built upon VoxelMorph which is a general-purpose framework for learning-based image registration. The major upgrades are (1) expansion of inputs to all weekly cone-beam computed tomography (CBCTs) acquired for monitoring treatment responses throughout a radiotherapy course, for registration to their planning CT; (2) incorporation of 3D convolutional long short-term memory between the encoder and decoder of VoxelMorph, to parse the temporal patterns of anatomical changes; and (3) addition of bidirectional pathways to calculate and minimize inverse consistency errors (ICEs). Longitudinal image sets from 50 patients, including a planning CT and 6 weekly CBCTs per patient, were utilized for network training and cross-validation. The outputs were deformation vector fields for all the registration pairs. The loss function was composed of a normalized cross-correlation for image intensity similarity, a DICE for contour similarity, an ICE, and a deformation regularization term. For performance evaluation, DICE and Hausdorff distance (HD) for the manual versus predicted contours of tumor and esophagus on weekly basis were quantified and further compared with other state-of-the-art algorithms, including conventional VoxelMorph and large deformation diffeomorphic metric mapping (LDDMM).Visualization of the hidden states of Seq2Morph revealed distinct spatiotemporal anatomy change patterns. Quantitatively, Seq2Morph performed similarly to LDDMM, but significantly outperformed VoxelMorph as measured by GTV DICE: (0.799±0.078, 0.798±0.081, and 0.773±0.078), and 50% HD (mm): (0.80±0.57, 0.88±0.66, and 0.95±0.60). The per-patient inference of Seq2Morph took 22 s, much less than LDDMM (∼30 min).Seq2Morph can provide accurate and fast DIR for longitudinal image studies by exploiting spatial-temporal patterns. It closely matches the clinical workflow and has the potential to serve both online and offline ART." @default.
- W4307504227 created "2022-11-02" @default.
- W4307504227 creator A5041395889 @default.
- W4307504227 creator A5058225724 @default.
- W4307504227 creator A5062174467 @default.
- W4307504227 creator A5065309573 @default.
- W4307504227 creator A5069653985 @default.
- W4307504227 creator A5088189613 @default.
- W4307504227 date "2022-11-10" @default.
- W4307504227 modified "2023-10-16" @default.
- W4307504227 title "Seq2Morph: A deep learning deformable image registration algorithm for longitudinal imaging studies and adaptive radiotherapy" @default.
- W4307504227 cites W1934887646 @default.
- W4307504227 cites W1984455966 @default.
- W4307504227 cites W2000986084 @default.
- W4307504227 cites W2002752499 @default.
- W4307504227 cites W2035093859 @default.
- W4307504227 cites W2137272573 @default.
- W4307504227 cites W2563619737 @default.
- W4307504227 cites W2605239868 @default.
- W4307504227 cites W2611819634 @default.
- W4307504227 cites W2821228923 @default.
- W4307504227 cites W2886932427 @default.
- W4307504227 cites W2942066802 @default.
- W4307504227 cites W2949012288 @default.
- W4307504227 cites W2968040751 @default.
- W4307504227 cites W2984409727 @default.
- W4307504227 cites W2990081072 @default.
- W4307504227 cites W3004561498 @default.
- W4307504227 cites W3007763359 @default.
- W4307504227 cites W3013056581 @default.
- W4307504227 cites W3013104684 @default.
- W4307504227 cites W3045889720 @default.
- W4307504227 cites W3081070967 @default.
- W4307504227 cites W3084571016 @default.
- W4307504227 cites W3092398208 @default.
- W4307504227 cites W3104164805 @default.
- W4307504227 cites W3136762441 @default.
- W4307504227 cites W3159862285 @default.
- W4307504227 cites W3168630655 @default.
- W4307504227 cites W4213370086 @default.
- W4307504227 doi "https://doi.org/10.1002/mp.16026" @default.
- W4307504227 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36303270" @default.
- W4307504227 hasPublicationYear "2022" @default.
- W4307504227 type Work @default.
- W4307504227 citedByCount "3" @default.
- W4307504227 countsByYear W43075042272023 @default.
- W4307504227 crossrefType "journal-article" @default.
- W4307504227 hasAuthorship W4307504227A5041395889 @default.
- W4307504227 hasAuthorship W4307504227A5058225724 @default.
- W4307504227 hasAuthorship W4307504227A5062174467 @default.
- W4307504227 hasAuthorship W4307504227A5065309573 @default.
- W4307504227 hasAuthorship W4307504227A5069653985 @default.
- W4307504227 hasAuthorship W4307504227A5088189613 @default.
- W4307504227 hasConcept C108583219 @default.
- W4307504227 hasConcept C115961682 @default.
- W4307504227 hasConcept C141898687 @default.
- W4307504227 hasConcept C153180895 @default.
- W4307504227 hasConcept C154945302 @default.
- W4307504227 hasConcept C162324750 @default.
- W4307504227 hasConcept C166704113 @default.
- W4307504227 hasConcept C176217482 @default.
- W4307504227 hasConcept C21547014 @default.
- W4307504227 hasConcept C31601959 @default.
- W4307504227 hasConcept C31972630 @default.
- W4307504227 hasConcept C41008148 @default.
- W4307504227 hasConcept C89600930 @default.
- W4307504227 hasConcept C9267231 @default.
- W4307504227 hasConceptScore W4307504227C108583219 @default.
- W4307504227 hasConceptScore W4307504227C115961682 @default.
- W4307504227 hasConceptScore W4307504227C141898687 @default.
- W4307504227 hasConceptScore W4307504227C153180895 @default.
- W4307504227 hasConceptScore W4307504227C154945302 @default.
- W4307504227 hasConceptScore W4307504227C162324750 @default.
- W4307504227 hasConceptScore W4307504227C166704113 @default.
- W4307504227 hasConceptScore W4307504227C176217482 @default.
- W4307504227 hasConceptScore W4307504227C21547014 @default.
- W4307504227 hasConceptScore W4307504227C31601959 @default.
- W4307504227 hasConceptScore W4307504227C31972630 @default.
- W4307504227 hasConceptScore W4307504227C41008148 @default.
- W4307504227 hasConceptScore W4307504227C89600930 @default.
- W4307504227 hasConceptScore W4307504227C9267231 @default.
- W4307504227 hasIssue "2" @default.
- W4307504227 hasLocation W43075042271 @default.
- W4307504227 hasLocation W43075042272 @default.
- W4307504227 hasOpenAccess W4307504227 @default.
- W4307504227 hasPrimaryLocation W43075042271 @default.
- W4307504227 hasRelatedWork W1669643531 @default.
- W4307504227 hasRelatedWork W2005437358 @default.
- W4307504227 hasRelatedWork W2008656436 @default.
- W4307504227 hasRelatedWork W2023558673 @default.
- W4307504227 hasRelatedWork W2028296930 @default.
- W4307504227 hasRelatedWork W2039154422 @default.
- W4307504227 hasRelatedWork W2110230079 @default.
- W4307504227 hasRelatedWork W2134924024 @default.
- W4307504227 hasRelatedWork W2517104666 @default.
- W4307504227 hasRelatedWork W2790662084 @default.
- W4307504227 hasVolume "50" @default.
- W4307504227 isParatext "false" @default.