Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307539582> ?p ?o ?g. }
- W4307539582 endingPage "235" @default.
- W4307539582 startingPage "217" @default.
- W4307539582 abstract "Abstract Over the past years, the recommender systems community invented several novel approaches that reached better and better prediction accuracy. Sequential recommendation, such as music recommendation, has seen large improvements from neural network-based models such as recurrent neural networks or transformers. When no sequential information is available or not relevant, such as for book, movie, or product recommendation, however, the classic k -nearest neighbor algorithm appears to remain competitive, even when compared to much more sophisticated methods. In this paper, we attempt to explain the inner workings of the nearest neighbor using probabilistic tools, treating similarity as conditional probability and presenting a novel model for explaining and removing popularity bias. First, we provide a probabilistic formulation of similarity and the classic prediction formula. Second, by modeling user behavior as a combination of personal preference and global influence, we are able to explain the presence of popularity bias in the predictions. Finally, we utilize Bayesian inference to construct a theoretically grounded variant of the widely used inverse frequency scaling, which we use to mitigate the effect of popularity bias in the predictions. By replacing the formerly ad hoc choices of nearest neighbor with probabilistically founded counterparts, we are able to improve prediction accuracy over a variety of data sets and gain an increased understanding of the theory behind the method." @default.
- W4307539582 created "2022-11-03" @default.
- W4307539582 creator A5015841575 @default.
- W4307539582 creator A5021452458 @default.
- W4307539582 date "2022-10-29" @default.
- W4307539582 modified "2023-10-14" @default.
- W4307539582 title "A probabilistic perspective on nearest neighbor for implicit recommendation" @default.
- W4307539582 cites W1587374567 @default.
- W4307539582 cites W1690919088 @default.
- W4307539582 cites W1987431925 @default.
- W4307539582 cites W1992665562 @default.
- W4307539582 cites W2006759076 @default.
- W4307539582 cites W2013916093 @default.
- W4307539582 cites W2016182283 @default.
- W4307539582 cites W2020631728 @default.
- W4307539582 cites W2027731328 @default.
- W4307539582 cites W2027829212 @default.
- W4307539582 cites W2037594831 @default.
- W4307539582 cites W2042281163 @default.
- W4307539582 cites W2045745608 @default.
- W4307539582 cites W2046974451 @default.
- W4307539582 cites W2055945388 @default.
- W4307539582 cites W2066611560 @default.
- W4307539582 cites W2101409192 @default.
- W4307539582 cites W2108630796 @default.
- W4307539582 cites W2116206254 @default.
- W4307539582 cites W2121710227 @default.
- W4307539582 cites W2126695993 @default.
- W4307539582 cites W2133266261 @default.
- W4307539582 cites W2142144955 @default.
- W4307539582 cites W2147991930 @default.
- W4307539582 cites W2153578526 @default.
- W4307539582 cites W2155106456 @default.
- W4307539582 cites W2158542147 @default.
- W4307539582 cites W2159094788 @default.
- W4307539582 cites W2171960770 @default.
- W4307539582 cites W2172296140 @default.
- W4307539582 cites W2196920274 @default.
- W4307539582 cites W2219888463 @default.
- W4307539582 cites W2508174604 @default.
- W4307539582 cites W2583674722 @default.
- W4307539582 cites W2605350416 @default.
- W4307539582 cites W2626454364 @default.
- W4307539582 cites W2726499916 @default.
- W4307539582 cites W2739587313 @default.
- W4307539582 cites W2775582110 @default.
- W4307539582 cites W2859183155 @default.
- W4307539582 cites W2892888989 @default.
- W4307539582 cites W2895527213 @default.
- W4307539582 cites W2910577570 @default.
- W4307539582 cites W2912745432 @default.
- W4307539582 cites W2963085847 @default.
- W4307539582 cites W2972814227 @default.
- W4307539582 cites W2982267219 @default.
- W4307539582 cites W3045841900 @default.
- W4307539582 cites W3081170586 @default.
- W4307539582 cites W3083054323 @default.
- W4307539582 cites W3099386565 @default.
- W4307539582 cites W3100479353 @default.
- W4307539582 cites W3101172266 @default.
- W4307539582 cites W3103145119 @default.
- W4307539582 cites W3105114834 @default.
- W4307539582 cites W3125645198 @default.
- W4307539582 cites W3138194008 @default.
- W4307539582 cites W3153261969 @default.
- W4307539582 cites W3185693672 @default.
- W4307539582 cites W3200664681 @default.
- W4307539582 cites W3201030325 @default.
- W4307539582 cites W3207678800 @default.
- W4307539582 cites W3208942872 @default.
- W4307539582 cites W3211412343 @default.
- W4307539582 cites W4206588201 @default.
- W4307539582 cites W4207046113 @default.
- W4307539582 cites W4226103496 @default.
- W4307539582 cites W4246277771 @default.
- W4307539582 cites W4251597219 @default.
- W4307539582 cites W4297971002 @default.
- W4307539582 doi "https://doi.org/10.1007/s41060-022-00367-4" @default.
- W4307539582 hasPublicationYear "2022" @default.
- W4307539582 type Work @default.
- W4307539582 citedByCount "1" @default.
- W4307539582 countsByYear W43075395822023 @default.
- W4307539582 crossrefType "journal-article" @default.
- W4307539582 hasAuthorship W4307539582A5015841575 @default.
- W4307539582 hasAuthorship W4307539582A5021452458 @default.
- W4307539582 hasBestOaLocation W43075395821 @default.
- W4307539582 hasConcept C103278499 @default.
- W4307539582 hasConcept C113238511 @default.
- W4307539582 hasConcept C115961682 @default.
- W4307539582 hasConcept C119857082 @default.
- W4307539582 hasConcept C124101348 @default.
- W4307539582 hasConcept C154945302 @default.
- W4307539582 hasConcept C15744967 @default.
- W4307539582 hasConcept C2776214188 @default.
- W4307539582 hasConcept C2780586970 @default.
- W4307539582 hasConcept C41008148 @default.
- W4307539582 hasConcept C49937458 @default.
- W4307539582 hasConcept C50644808 @default.