Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307546477> ?p ?o ?g. }
- W4307546477 endingPage "3346" @default.
- W4307546477 startingPage "3346" @default.
- W4307546477 abstract "Accurate real-time forecasts of inundation depth and area during typhoon flooding is crucial to disaster emergency response. The development of an inundation forecasting model has been recognized as essential to manage disaster risk. In the past, most researchers used multiple single-point forecasts to obtain surface flooding depth forecasts with spatial interpolation. In this study, a forecasting model (QPF-RIF) integrating a hydrodynamic model (SOBEK), support vector machine–multi-step forecast (SVM-MSF), and a self-organizing map (SOM) were proposed. The task of this model was divided into four parts: hydrodynamic simulation, point forecasting, inundation database clustering, and spatial expansion. First, the SOBEK model was used in simulating inundation hydrodynamics to construct the flooding maps database. Second, the SVM-MSF yields water level (inundation volume) forecasted with a 1 to 72 h lead time. Third, the SOM clustered the previous flooding maps database into several groups representing different flooding characteristics. Finally, a spatial expansion module produced inundation maps based on forecasting information from forecasting flood volume and flood causative factors. To demonstrate the effectiveness of the proposed forecasting model, we presented an application to the Yilan River basin in Taiwan. Our forecasting results indicated that the proposed model yields accurate flood inundation maps (less than 1 cm error) for a 1 h lead time. For long-term forecasting (46 h to 72 h ahead), the model controlled the error of the forecast results within 7 cm. In the testing events, the model forecasted an average of 83% of the flooding area in the long term. This flood inundation forecasting model is expected to be useful in providing early flood warning information for disaster emergency response." @default.
- W4307546477 created "2022-11-03" @default.
- W4307546477 creator A5001751205 @default.
- W4307546477 creator A5023638154 @default.
- W4307546477 creator A5031281158 @default.
- W4307546477 creator A5040604673 @default.
- W4307546477 creator A5068280687 @default.
- W4307546477 creator A5089246053 @default.
- W4307546477 date "2022-10-21" @default.
- W4307546477 modified "2023-09-27" @default.
- W4307546477 title "Long-Term Flooding Maps Forecasting System Using Series Machine Learning and Numerical Weather Prediction System" @default.
- W4307546477 cites W1990517717 @default.
- W4307546477 cites W1998830134 @default.
- W4307546477 cites W2015586534 @default.
- W4307546477 cites W2023179450 @default.
- W4307546477 cites W2026876466 @default.
- W4307546477 cites W2032874589 @default.
- W4307546477 cites W2037511922 @default.
- W4307546477 cites W2037702125 @default.
- W4307546477 cites W2049818605 @default.
- W4307546477 cites W2100085182 @default.
- W4307546477 cites W2769873283 @default.
- W4307546477 cites W2903237317 @default.
- W4307546477 cites W3209754854 @default.
- W4307546477 cites W4207009441 @default.
- W4307546477 cites W4226182805 @default.
- W4307546477 cites W4280508621 @default.
- W4307546477 cites W4282551281 @default.
- W4307546477 cites W4283703608 @default.
- W4307546477 cites W4285095615 @default.
- W4307546477 cites W4288697317 @default.
- W4307546477 cites W4296764281 @default.
- W4307546477 cites W4297456329 @default.
- W4307546477 cites W65738273 @default.
- W4307546477 doi "https://doi.org/10.3390/w14203346" @default.
- W4307546477 hasPublicationYear "2022" @default.
- W4307546477 type Work @default.
- W4307546477 citedByCount "0" @default.
- W4307546477 crossrefType "journal-article" @default.
- W4307546477 hasAuthorship W4307546477A5001751205 @default.
- W4307546477 hasAuthorship W4307546477A5023638154 @default.
- W4307546477 hasAuthorship W4307546477A5031281158 @default.
- W4307546477 hasAuthorship W4307546477A5040604673 @default.
- W4307546477 hasAuthorship W4307546477A5068280687 @default.
- W4307546477 hasAuthorship W4307546477A5089246053 @default.
- W4307546477 hasBestOaLocation W43075464771 @default.
- W4307546477 hasConcept C119857082 @default.
- W4307546477 hasConcept C121332964 @default.
- W4307546477 hasConcept C12267149 @default.
- W4307546477 hasConcept C124101348 @default.
- W4307546477 hasConcept C153294291 @default.
- W4307546477 hasConcept C15744967 @default.
- W4307546477 hasConcept C166957645 @default.
- W4307546477 hasConcept C181654704 @default.
- W4307546477 hasConcept C183195422 @default.
- W4307546477 hasConcept C186594467 @default.
- W4307546477 hasConcept C205649164 @default.
- W4307546477 hasConcept C39432304 @default.
- W4307546477 hasConcept C41008148 @default.
- W4307546477 hasConcept C542102704 @default.
- W4307546477 hasConcept C61797465 @default.
- W4307546477 hasConcept C62520636 @default.
- W4307546477 hasConcept C73555534 @default.
- W4307546477 hasConcept C74256435 @default.
- W4307546477 hasConceptScore W4307546477C119857082 @default.
- W4307546477 hasConceptScore W4307546477C121332964 @default.
- W4307546477 hasConceptScore W4307546477C12267149 @default.
- W4307546477 hasConceptScore W4307546477C124101348 @default.
- W4307546477 hasConceptScore W4307546477C153294291 @default.
- W4307546477 hasConceptScore W4307546477C15744967 @default.
- W4307546477 hasConceptScore W4307546477C166957645 @default.
- W4307546477 hasConceptScore W4307546477C181654704 @default.
- W4307546477 hasConceptScore W4307546477C183195422 @default.
- W4307546477 hasConceptScore W4307546477C186594467 @default.
- W4307546477 hasConceptScore W4307546477C205649164 @default.
- W4307546477 hasConceptScore W4307546477C39432304 @default.
- W4307546477 hasConceptScore W4307546477C41008148 @default.
- W4307546477 hasConceptScore W4307546477C542102704 @default.
- W4307546477 hasConceptScore W4307546477C61797465 @default.
- W4307546477 hasConceptScore W4307546477C62520636 @default.
- W4307546477 hasConceptScore W4307546477C73555534 @default.
- W4307546477 hasConceptScore W4307546477C74256435 @default.
- W4307546477 hasIssue "20" @default.
- W4307546477 hasLocation W43075464771 @default.
- W4307546477 hasLocation W43075464772 @default.
- W4307546477 hasOpenAccess W4307546477 @default.
- W4307546477 hasPrimaryLocation W43075464771 @default.
- W4307546477 hasRelatedWork W2285335127 @default.
- W4307546477 hasRelatedWork W2356044603 @default.
- W4307546477 hasRelatedWork W2903237317 @default.
- W4307546477 hasRelatedWork W2975296332 @default.
- W4307546477 hasRelatedWork W3162149539 @default.
- W4307546477 hasRelatedWork W3214787751 @default.
- W4307546477 hasRelatedWork W4200279588 @default.
- W4307546477 hasRelatedWork W4244779759 @default.
- W4307546477 hasRelatedWork W4245695749 @default.
- W4307546477 hasRelatedWork W4252205640 @default.
- W4307546477 hasVolume "14" @default.