Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307549181> ?p ?o ?g. }
- W4307549181 endingPage "13875" @default.
- W4307549181 startingPage "13875" @default.
- W4307549181 abstract "Longer-term projections indicate that today’s developing and rising nations will account for roughly 60% of the global GDP by 2030. There is tremendous financial growth and advancement in developing countries, resulting in a high demand for personal loans from citizens. Depending on their needs, many people seek personal loans from banks. However, it is difficult for banks to predict which consumers will pay their bills and which will not since the number of bank frauds in many countries, notably India, is growing. According to the Reserve Bank of India, the Indian banking industry uncovered INR 71,500 in the scam in the fiscal year 2018–2019. The average lag time between the date of the occurrence and its recognition by banks, according to the statistics, was 22 months. This is despite harsher warnings from both the RBI and the government, particularly in the aftermath of the Nirav Modi debacle. To overcome this issue, we demonstrated how to create a predictive loan model that identifies problematic candidates who are considerably more likely to pay the money back. In step-by-step methods, we illustrated how to handle raw data, remove unneeded portions, choose appropriate features, gather exploratory statistics, and finally how to construct a model. In this work, we created supervised learning models such as decision tree (DT), random forest (RF), and k-nearest neighbor (KNN). According to the classification report, the models with the highest accuracy score, f-score, precision, and recall are considered the best among all models. However, in this work, our primary aim was to reduce the false-positive parameter in the classification models’ confusion matrix to reduce the banks’ non-performing assets (NPA), which is helpful to the banking sector. The data were graphed to help bankers better understand the customer’s behavior. Thus, using the same method, client loyalty may also be anticipated." @default.
- W4307549181 created "2022-11-03" @default.
- W4307549181 creator A5021062768 @default.
- W4307549181 creator A5040905393 @default.
- W4307549181 creator A5049157795 @default.
- W4307549181 creator A5053789975 @default.
- W4307549181 creator A5055981334 @default.
- W4307549181 creator A5069897072 @default.
- W4307549181 creator A5071211251 @default.
- W4307549181 creator A5077423502 @default.
- W4307549181 date "2022-10-25" @default.
- W4307549181 modified "2023-09-30" @default.
- W4307549181 title "Exploitation of Machine Learning Algorithms for Detecting Financial Crimes Based on Customers’ Behavior" @default.
- W4307549181 cites W1528913741 @default.
- W4307549181 cites W1602011302 @default.
- W4307549181 cites W1966493433 @default.
- W4307549181 cites W1970532985 @default.
- W4307549181 cites W1973533434 @default.
- W4307549181 cites W1978195512 @default.
- W4307549181 cites W1990179744 @default.
- W4307549181 cites W2014885136 @default.
- W4307549181 cites W2032435122 @default.
- W4307549181 cites W2032552362 @default.
- W4307549181 cites W2032908054 @default.
- W4307549181 cites W2045049630 @default.
- W4307549181 cites W2053529851 @default.
- W4307549181 cites W2057819225 @default.
- W4307549181 cites W2062480970 @default.
- W4307549181 cites W2074346829 @default.
- W4307549181 cites W2096266510 @default.
- W4307549181 cites W2098437164 @default.
- W4307549181 cites W2122535208 @default.
- W4307549181 cites W2148125134 @default.
- W4307549181 cites W2150702790 @default.
- W4307549181 cites W2532293703 @default.
- W4307549181 cites W2553088728 @default.
- W4307549181 cites W2749433718 @default.
- W4307549181 cites W2752665537 @default.
- W4307549181 cites W2779931100 @default.
- W4307549181 cites W2786146442 @default.
- W4307549181 cites W2786577118 @default.
- W4307549181 cites W2788025656 @default.
- W4307549181 cites W2790097716 @default.
- W4307549181 cites W2794492243 @default.
- W4307549181 cites W2886509629 @default.
- W4307549181 cites W2890798839 @default.
- W4307549181 cites W2971824338 @default.
- W4307549181 cites W2976375543 @default.
- W4307549181 cites W2998729480 @default.
- W4307549181 cites W3015572291 @default.
- W4307549181 cites W3030949011 @default.
- W4307549181 cites W3036230325 @default.
- W4307549181 cites W3125279366 @default.
- W4307549181 cites W3134351596 @default.
- W4307549181 cites W3140909510 @default.
- W4307549181 cites W3191128830 @default.
- W4307549181 cites W3196773772 @default.
- W4307549181 cites W3201090655 @default.
- W4307549181 cites W4210350118 @default.
- W4307549181 cites W4220865112 @default.
- W4307549181 cites W4224589308 @default.
- W4307549181 cites W4226436956 @default.
- W4307549181 cites W4226437393 @default.
- W4307549181 cites W4228999038 @default.
- W4307549181 cites W4229019055 @default.
- W4307549181 cites W4280507864 @default.
- W4307549181 cites W4281251447 @default.
- W4307549181 cites W4281642797 @default.
- W4307549181 cites W4281878156 @default.
- W4307549181 cites W4283520324 @default.
- W4307549181 cites W4283587835 @default.
- W4307549181 cites W4283805935 @default.
- W4307549181 cites W4284886432 @default.
- W4307549181 cites W4285006276 @default.
- W4307549181 cites W4285013053 @default.
- W4307549181 cites W4289520325 @default.
- W4307549181 cites W4291952042 @default.
- W4307549181 cites W4296338018 @default.
- W4307549181 cites W4297004570 @default.
- W4307549181 doi "https://doi.org/10.3390/su142113875" @default.
- W4307549181 hasPublicationYear "2022" @default.
- W4307549181 type Work @default.
- W4307549181 citedByCount "2" @default.
- W4307549181 countsByYear W43075491812022 @default.
- W4307549181 countsByYear W43075491812023 @default.
- W4307549181 crossrefType "journal-article" @default.
- W4307549181 hasAuthorship W4307549181A5021062768 @default.
- W4307549181 hasAuthorship W4307549181A5040905393 @default.
- W4307549181 hasAuthorship W4307549181A5049157795 @default.
- W4307549181 hasAuthorship W4307549181A5053789975 @default.
- W4307549181 hasAuthorship W4307549181A5055981334 @default.
- W4307549181 hasAuthorship W4307549181A5069897072 @default.
- W4307549181 hasAuthorship W4307549181A5071211251 @default.
- W4307549181 hasAuthorship W4307549181A5077423502 @default.
- W4307549181 hasBestOaLocation W43075491811 @default.
- W4307549181 hasConcept C10138342 @default.
- W4307549181 hasConcept C11413529 @default.
- W4307549181 hasConcept C119857082 @default.