Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307554433> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4307554433 endingPage "974" @default.
- W4307554433 startingPage "974" @default.
- W4307554433 abstract "The Remaining Useful Life (RUL) prediction of engineering equipment is bound to face the situation of missing data. The existing methods of RUL prediction for such cases mainly take “data generation—RUL prediction” as the basic idea but are often limited to the generation of one-dimensional test data, resulting in the extraction of the prediction network. Therefore, this paper proposes a multivariate degradation device based on Nonlinear Independent Components Estimation (NICE) and the Temporal Convolutional Network–Bidirectional Long Short-term Memory (TCN-BiLSTM) network for the RUL prediction requirements in the case of missing data. First, based on the NICE network, realistic data are generated through reversible sampling; then, the filling of multivariate missing data is completed. Next, the filled multivariate degradation data are processed to generate multivariate degradation data and predicted labels for constructing the training set and test set. Based on this, a residual life prediction model integrating TCN and the BiLSTM network is proposed. To evaluate the proposed method, this paper takes an example of the RUL prediction of aeroengines to perform multivariate degradation data-filling and prediction tasks. The results demonstrate the superiority and potential application value of the method." @default.
- W4307554433 created "2022-11-03" @default.
- W4307554433 creator A5009400101 @default.
- W4307554433 creator A5061138062 @default.
- W4307554433 creator A5062110273 @default.
- W4307554433 creator A5075724856 @default.
- W4307554433 creator A5090283553 @default.
- W4307554433 date "2022-10-25" @default.
- W4307554433 modified "2023-10-18" @default.
- W4307554433 title "A New Model for Remaining Useful Life Prediction Based on NICE and TCN-BiLSTM under Missing Data" @default.
- W4307554433 cites W2343916847 @default.
- W4307554433 cites W2415594836 @default.
- W4307554433 cites W2470142083 @default.
- W4307554433 cites W2471161958 @default.
- W4307554433 cites W2744067593 @default.
- W4307554433 cites W2772084711 @default.
- W4307554433 cites W2791384746 @default.
- W4307554433 cites W2900438754 @default.
- W4307554433 cites W2910660149 @default.
- W4307554433 cites W2944676531 @default.
- W4307554433 cites W2977718750 @default.
- W4307554433 cites W2987221721 @default.
- W4307554433 cites W3018894402 @default.
- W4307554433 cites W3047541051 @default.
- W4307554433 cites W3112478554 @default.
- W4307554433 cites W3127692495 @default.
- W4307554433 cites W3199215188 @default.
- W4307554433 cites W3202361779 @default.
- W4307554433 cites W3207642814 @default.
- W4307554433 cites W4205715751 @default.
- W4307554433 cites W4205830141 @default.
- W4307554433 cites W4206652641 @default.
- W4307554433 cites W4210562913 @default.
- W4307554433 cites W4214591409 @default.
- W4307554433 cites W4220845115 @default.
- W4307554433 cites W4289313722 @default.
- W4307554433 cites W4292313195 @default.
- W4307554433 doi "https://doi.org/10.3390/machines10110974" @default.
- W4307554433 hasPublicationYear "2022" @default.
- W4307554433 type Work @default.
- W4307554433 citedByCount "1" @default.
- W4307554433 countsByYear W43075544332023 @default.
- W4307554433 crossrefType "journal-article" @default.
- W4307554433 hasAuthorship W4307554433A5009400101 @default.
- W4307554433 hasAuthorship W4307554433A5061138062 @default.
- W4307554433 hasAuthorship W4307554433A5062110273 @default.
- W4307554433 hasAuthorship W4307554433A5075724856 @default.
- W4307554433 hasAuthorship W4307554433A5090283553 @default.
- W4307554433 hasBestOaLocation W43075544331 @default.
- W4307554433 hasConcept C11413529 @default.
- W4307554433 hasConcept C119857082 @default.
- W4307554433 hasConcept C124101348 @default.
- W4307554433 hasConcept C154945302 @default.
- W4307554433 hasConcept C155512373 @default.
- W4307554433 hasConcept C161584116 @default.
- W4307554433 hasConcept C16910744 @default.
- W4307554433 hasConcept C169903167 @default.
- W4307554433 hasConcept C177264268 @default.
- W4307554433 hasConcept C199360897 @default.
- W4307554433 hasConcept C41008148 @default.
- W4307554433 hasConcept C58489278 @default.
- W4307554433 hasConcept C9357733 @default.
- W4307554433 hasConceptScore W4307554433C11413529 @default.
- W4307554433 hasConceptScore W4307554433C119857082 @default.
- W4307554433 hasConceptScore W4307554433C124101348 @default.
- W4307554433 hasConceptScore W4307554433C154945302 @default.
- W4307554433 hasConceptScore W4307554433C155512373 @default.
- W4307554433 hasConceptScore W4307554433C161584116 @default.
- W4307554433 hasConceptScore W4307554433C16910744 @default.
- W4307554433 hasConceptScore W4307554433C169903167 @default.
- W4307554433 hasConceptScore W4307554433C177264268 @default.
- W4307554433 hasConceptScore W4307554433C199360897 @default.
- W4307554433 hasConceptScore W4307554433C41008148 @default.
- W4307554433 hasConceptScore W4307554433C58489278 @default.
- W4307554433 hasConceptScore W4307554433C9357733 @default.
- W4307554433 hasIssue "11" @default.
- W4307554433 hasLocation W43075544331 @default.
- W4307554433 hasOpenAccess W4307554433 @default.
- W4307554433 hasPrimaryLocation W43075544331 @default.
- W4307554433 hasRelatedWork W1515802933 @default.
- W4307554433 hasRelatedWork W2250140425 @default.
- W4307554433 hasRelatedWork W2626938262 @default.
- W4307554433 hasRelatedWork W2792951589 @default.
- W4307554433 hasRelatedWork W2981903314 @default.
- W4307554433 hasRelatedWork W3188543266 @default.
- W4307554433 hasRelatedWork W4210539784 @default.
- W4307554433 hasRelatedWork W4307554433 @default.
- W4307554433 hasRelatedWork W4311655238 @default.
- W4307554433 hasRelatedWork W4318979806 @default.
- W4307554433 hasVolume "10" @default.
- W4307554433 isParatext "false" @default.
- W4307554433 isRetracted "false" @default.
- W4307554433 workType "article" @default.