Matches in SemOpenAlex for { <https://semopenalex.org/work/W4307633512> ?p ?o ?g. }
- W4307633512 endingPage "5264" @default.
- W4307633512 startingPage "5264" @default.
- W4307633512 abstract "The revolution of artificial intelligence and its impacts on our daily life has led to tremendous interest in the field and its related subtypes: machine learning and deep learning. Scientists and developers have designed machine learning- and deep learning-based algorithms to perform various tasks related to tumor pathologies, such as tumor detection, classification, grading with variant stages, diagnostic forecasting, recognition of pathological attributes, pathogenesis, and genomic mutations. Pathologists are interested in artificial intelligence to improve the diagnosis precision impartiality and to minimize the workload combined with the time consumed, which affects the accuracy of the decision taken. Regrettably, there are already certain obstacles to overcome connected to artificial intelligence deployments, such as the applicability and validation of algorithms and computational technologies, in addition to the ability to train pathologists and doctors to use these machines and their willingness to accept the results. This review paper provides a survey of how machine learning and deep learning methods could be implemented into health care providers’ routine tasks and the obstacles and opportunities for artificial intelligence application in tumor morphology." @default.
- W4307633512 created "2022-11-04" @default.
- W4307633512 creator A5019777904 @default.
- W4307633512 creator A5031411078 @default.
- W4307633512 creator A5083271793 @default.
- W4307633512 date "2022-10-26" @default.
- W4307633512 modified "2023-10-18" @default.
- W4307633512 title "Deep Learning Approaches in Histopathology" @default.
- W4307633512 cites W1901129140 @default.
- W4307633512 cites W1978818813 @default.
- W4307633512 cites W1994847090 @default.
- W4307633512 cites W1995162574 @default.
- W4307633512 cites W2019214567 @default.
- W4307633512 cites W2062758226 @default.
- W4307633512 cites W2080232352 @default.
- W4307633512 cites W2111976640 @default.
- W4307633512 cites W2112796928 @default.
- W4307633512 cites W2124913959 @default.
- W4307633512 cites W2132031490 @default.
- W4307633512 cites W2140497649 @default.
- W4307633512 cites W2148998801 @default.
- W4307633512 cites W2153932922 @default.
- W4307633512 cites W2154813452 @default.
- W4307633512 cites W2159464222 @default.
- W4307633512 cites W2221588520 @default.
- W4307633512 cites W2329659234 @default.
- W4307633512 cites W2418166239 @default.
- W4307633512 cites W2470130773 @default.
- W4307633512 cites W2470965540 @default.
- W4307633512 cites W2504220184 @default.
- W4307633512 cites W2515717359 @default.
- W4307633512 cites W2581082771 @default.
- W4307633512 cites W2594760301 @default.
- W4307633512 cites W2604318649 @default.
- W4307633512 cites W2607075141 @default.
- W4307633512 cites W2613181504 @default.
- W4307633512 cites W2618530766 @default.
- W4307633512 cites W2620578070 @default.
- W4307633512 cites W2622279389 @default.
- W4307633512 cites W2624699030 @default.
- W4307633512 cites W2742679468 @default.
- W4307633512 cites W2760946358 @default.
- W4307633512 cites W2761290139 @default.
- W4307633512 cites W2761668583 @default.
- W4307633512 cites W2762006829 @default.
- W4307633512 cites W2762672048 @default.
- W4307633512 cites W2766753387 @default.
- W4307633512 cites W2769999077 @default.
- W4307633512 cites W2772723798 @default.
- W4307633512 cites W2792769372 @default.
- W4307633512 cites W2794699072 @default.
- W4307633512 cites W2794803511 @default.
- W4307633512 cites W2795387833 @default.
- W4307633512 cites W2796854304 @default.
- W4307633512 cites W2801370692 @default.
- W4307633512 cites W2803416021 @default.
- W4307633512 cites W2808210572 @default.
- W4307633512 cites W2811374795 @default.
- W4307633512 cites W2884988214 @default.
- W4307633512 cites W2887382745 @default.
- W4307633512 cites W2888793802 @default.
- W4307633512 cites W2889089723 @default.
- W4307633512 cites W2891346832 @default.
- W4307633512 cites W2893786635 @default.
- W4307633512 cites W2894917609 @default.
- W4307633512 cites W2897434820 @default.
- W4307633512 cites W2897927086 @default.
- W4307633512 cites W2908735595 @default.
- W4307633512 cites W2911324147 @default.
- W4307633512 cites W2914568698 @default.
- W4307633512 cites W2919115771 @default.
- W4307633512 cites W2922268597 @default.
- W4307633512 cites W2929968583 @default.
- W4307633512 cites W2938085684 @default.
- W4307633512 cites W2945976633 @default.
- W4307633512 cites W2946877213 @default.
- W4307633512 cites W2948930564 @default.
- W4307633512 cites W2949226441 @default.
- W4307633512 cites W2951934944 @default.
- W4307633512 cites W2957792382 @default.
- W4307633512 cites W2963652908 @default.
- W4307633512 cites W2964345665 @default.
- W4307633512 cites W2966986394 @default.
- W4307633512 cites W2970985632 @default.
- W4307633512 cites W2971045153 @default.
- W4307633512 cites W2972621596 @default.
- W4307633512 cites W2999399991 @default.
- W4307633512 cites W3015500759 @default.
- W4307633512 cites W3021413349 @default.
- W4307633512 cites W3036901136 @default.
- W4307633512 cites W3045168954 @default.
- W4307633512 cites W3100084586 @default.
- W4307633512 cites W3102737931 @default.
- W4307633512 cites W3143116276 @default.
- W4307633512 cites W3152826720 @default.
- W4307633512 cites W3159742197 @default.
- W4307633512 cites W3186331246 @default.
- W4307633512 cites W4213330443 @default.